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ABSTRACT
Hierarchical classification (HC) is a popular and efficient
way for detecting the semantic concepts from the images.
However, the conventional HC, which always selects the

branch with the highest classification response to go on, has
the risk of propagating serious errors from higher levels of
the hierarchy to the lower levels. We argue that the highest-
response-first strategy is too arbitrary, because the candi-
date nodes are considered individually which ignores the se-
mantic relationship among them. In this paper, we propose
a novel method for HC, which is able to utilize the seman-
tic relationship among candidate nodes and their children
to recover the responses of unreliable classifiers of the can-
didate nodes, with the hope of providing the branch selec-
tion a more globally valid and semantically consistent view.
The experimental results show that the proposed method
outperforms the conventional HC methods and achieves a
satisfactory balance between the accuracy and efficiency.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

Keywords
Concept Detection, Large-scale Hierarchy, Error Propaga-
tion

1. INTRODUCTION
Detecting semantic concept(s) from images is a multi-class

classification problem, which has received intensive studies
in the last decade. The complexity of the problem increases
dramatically when the number of concepts exceeds a cer-
tain extent. To reduce the complexity, a practical way is to
simplify the problem into a set of binary classification prob-
lems, where a binary classifier is trained for each concept,
and during testing, all classifiers are applied to the target
to which class label(s) are assigned by the classifier(s) with
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Figure 1: An example of image concept hierarchy.

the highest response(s). While the one (target)-vs-all (con-
cepts) simplification provides a much more feasible solution
for multiple concept detection, nevertheless, it is still im-
practical when facing large-scale datasets (e.g., ImageNet
[4] which includes 21,841 concepts with each of them asso-
ciated with 1,000 images), because all classifiers have to be
called at runtime for every image.

To tackle the scalability issue, hierarchical classification
is commonly adopted. Instead of applying all classifiers to
a target image, hierarchical classification organizes concept
classifiers into a hierarchy (e.g., Figure 1) according to the
semantic relationship among concepts, and only selects a
small set of classifiers for testing. The selection procedure
usually starts from the root of the hierarchy and proceeds
with a top-down manner that, for each node under investi-
gation, hierarchical classification first applies the classifiers
of the child nodes to the target, and then selects the child
node with the highest response on its classifier as the next
node to investigate. The procedure repeats recursively and
results in a path from the root to a leaf node (e.g., Animal-
Fish-Salmon), on the basis of which all the concept labels
on the path will be assigned to the target image.

By reducing the number of classifiers to be visited, hier-
archical classification significantly improves the efficiency of
multiple concept detection, and thus has been widely em-
ployed (e.g, web categorization [3, 1] and gene function pre-
diction [10]). However, as pointed out by Bennett et al [1],
the improvement is paid at the price of scarifying effective-
ness of the classification. More specifically, the top-down
classification procedure will make the classification errors
included at the higher levels of the hierarchy be propagated
to the lower levels, and in turn significantly degrades the
accuracy of those leaf nodes. A few methods have been pro-
posed to address this problem. In [3], Xue et al. address
the problem by selecting only a small number of nodes from
the original hierarchy to construct a simplified hierarchy for



classification. In this way, the chance of error propagation
is reduced because the classification path from root to leaf
node is significantly shorten. In [1], when building the set of
negative instances for training each node, Bennett et al. also
include the false positive instances which have been misclas-
sified at its ancestor nodes, in the hope that those instances
can be rejected by current classifier and the mis-classification
errors will not be further propagated to the low level nodes.
Even those methods are able to improve the accuracy of

hierarchical classification, we argue that the optimization
schemes employed still have not addressed the core of the
error propagation – the arbitrariness of the branch selec-
tion. In the top-down selection procedure, the classification
will be led to a branch under the classifier with the highest
response. This is arbitrary because it is well known that
the performance of the visual concept detectors is still not
satisfactory in a general sense, and therefore, it frequently
happens that the high response is from an unreliable clas-
sifier. Selecting a branch under such node may seriously
ruin the classification procedure follows. In addition, the
highest-response-first strategy is lack of global perspective,
in the way that the classification only focuses on the local re-
sponses of the nodes to be investigated, but never verifies if
these responses are valid or globally consistent to the seman-
tic relationship encapsulated in the hierarchy. With Figure 1
as an example, assuming that a target image includes a fish,
the classification will be led to the branch under Dog if the
classifier for Dog is unreliable and outputs higher response
than that of Fish. When deciding next node to move on,
the classifiers of the Pug Dog and Hunting Dog (if reliable
enough) will output low responses. Globally speaking, this
is conflicting to the semantic relationship in the hierarchy,
in the sense that a parent node is with high response while
all of its children nodes are with low responses. However,
the procedure will never “doubt” the decision at the node
Dog and continue to select between Pug Dog and Hunting
Dog, resulting in further error propagation.
In this paper, we propose a novel branch selection scheme

for hierarchical classification to address the core issue re-
lated to error propagation. Instead of arbitrarily selecting
the node with the highest response, we introduce an error
recovery scheme which first verifies the semantic consistency
of the observation on a candidate node under investigation
and those of its relatives (e.g., siblings, children and so on)
in the hierarchy, and then adjusts the output of the node ac-
cordingly. The decision of which branch to go will be delayed
when the verifications of all candidate nodes are finished. In
other words, the proposed scheme makes the decision only
when more observations are available and it is “confident”
to do so. In the example mentioned above, the scheme is
able to detect the inconsistency among the observation of
Dog and those of its children nodes, and thus increase the
chance of leading the classification to the correct branch (i.e.,
that under Fish in this example).

2. METHOD
In the proposed method, instead of considering only the

candidate nodes, we also involve their children and siblings
to form a committee for decision making. In practical, before
deciding which branch to go, we adjust the response of each
candidate node to be semantically consistent with those of
other nodes in the committee, with the hope that the unre-
liable response of a candidate can be fixed if it is conflicting

with those of its relatives in the hierarchy. Therefore, mak-
ing decision on the adjusted response is with a more global
view and can avoid the arbitrariness of the branch selection
with the highest-response-first local strategy.

2.1 Problem Formulation
Given an instance x and a node ct as the current node in

a hierarchy, we denote the branch to go at next moment as
a node ct+1, so that

ct+1 = argmax
c∈N (ct)

f̂c(x) (1)

where N (ct) is a set of child nodes of ct, and f̂c(x) is the
adjusted response of c to x. Further denoting the original re-
sponse of c as fc(x), we can formulate the highest-response-

first local strategy by replacing f̂c(x) with the original re-
sponse fc(x). Moreover, our committee for decision mak-
ing (denoted as T ) is a union of ct’s children (i.e., N (ct))
and its grandchildren (i.e.,

∪
c∈N (ct)

N (c)). The problem

to solve is then how to define the adjusting function f̂c(x)
with respect to both the semantical relationship and the
observations of the nodes in the committee T . Let us de-
note the semantical relationship among nodes as ΦT and
compose the observations of the committee T into a vec-
tor fT (x) = [fc1 , fc2 , fc3 , · · · ] where c1, c2, c3, · · · ∈ T , the
problem can be formulated as

f̂c(x) = P (c|ΦT , fT (x)). (2)

2.2 Committee-based Response Adjustment
Once the hierarchy is known, there are a lot of priori can

be utilized for modeling f̂c(x). For example, by definition,
the siblings in a hierarchy are semantically exclusive, so that
the response for a candidate node should be approaching 1
if those of its siblings are all with responses close to 0. In
addition, parent node represents a union of the instances of
its child nodes, so that the response for a candidate node
should be close to 0 if those of its child nodes are all with
responses close to 0. In brief, confined by the semantic rela-
tionship ΦT , the responses of nodes in a committee should
always follow certain patterns. Therefore, we can use the ob-
servations of the committee T to predict that of a candidate
node so as to implement the response adjustment.

Intuitively, this can be simply modeled by logistic regres-
sion, where we use the observations of the committee T as
predictors for estimating a reasonable output for a target
concept c. The semantic constraints ΦT is then modeled by
a set of weights (i.e., a weight vector wc = [w1, w2, · · · ]) as-
sociated with the predictors. A weight given to a predictor
reflects the ability of the predictor to estimate the output of
the target concept. By further expanding the logistic regres-
sion to all the candidate nodes, we can learn their weights at
the same time by multi-class regression (MLR), resulting a
weight matrix W. It is worth mentioning that learning the
weights together not only brings convenience for the learning
but also makes the inter-concept relationship among candi-
date nodes be modeled during the learning. By replacing
the semantic relationship ΦT with W, Eq. (2) can be im-
plemented with MLR as

P (c|W, fT (x)) =
exp(wT

c fT (x))∑
ck∈N (ct)

exp(wT
k fT (x))

, (3)



Table 1: Dataset statistics: number of leaf nodes
(#Leaf) and internal nodes (#Int), depth of the hi-
erarchy (#Dep), average number of instances of each
concept for training (#Trn), validation (#Val) and
testing (#Tst) respectively.
Dataset #Leaf #Int #Dep #Trn #Val #Tst
Caltech256 256 62 6 58 29 29
ILSRVC1K 1000 645 13 1261 50 150

where wk is the weight vector for the corresponding candi-
date node ck ∈ N (ct).
Given a set of training instances X = {x1, x2, · · · } with

each of them associated with a class label yi ∈ N (ct), an
optimal weight matrix W∗ can be obtained by

W∗ = argmin
W

−
|X|∑

xi∈X

logP (yi|W, fT (xi)) + λ∥W∥2, (4)

where the second term is a regularizer used to control the
model complexity, and λ is regularization parameter. Equ. 4
is referred to as L2-regularized MLR. This problem can be
efficiently solved by Quasi-Newton method. In the experi-
ment, we adopt the package released by Mark Schmidt∗.

2.3 Verification and Recovery
Since the labels given to each instance always follow cer-

tain patterns which reflect the inter-concept semantic rela-
tionship in the hierarchy, the resulting weight matrix W*
in Equ. 4 is also embedded with those relationship which
can be used to verify if a set of responses is consistent to
those patterns, in the way that it results in larger response
in Eq. (3) when it is consistent and smaller response oth-
erwise. Note that, during learning, we put the candidate
node itself in the committee, with the hope that the re-
sulting weight can also reflect the classification reliability of
the candidate node. According to the principle of MLR, if
a candidate node is with an unreliable classifier, it will be
assigned with a small weight to weaken its impact to the
final results (i.e., the adjusted response Eq. (3)), and the
predication for its label will mainly rely on the responses of
other nodes in the committee. By contrast, if the node is a
reliable classifier, it earns a large weight so its impacts will
dominate those of others. This also explains why we put the
candidate node itself in the committee. Therefore, the pro-
posed method fulfills the semantic relationship verification
and error recovery at the same time by MLR.

3. EXPERIMENTS
3.1 Settings
We use two image datasets for evaluation, Caltech256 [2]

and ILSVRC1K [4]. Caltech256 consists of 256 labeled con-
cepts for object annotation. In [2], a concept hierarchy is
pre-defined using the 256 concepts as leaf nodes. ILSRVC1K
is a subset of ImageNet, where the concepts are organized by
WordNet. Starting from the 1,000 concepts in ILSRVC1K,
a hierarchy is extracted from the ImageNet hierarchy. Ta-
ble 1 lists the statistics. We follow the train/validation/test
split in ILSRVC1K. For Caltech256, the instances of each
concept are split to train/val/test by 50%-25%-25%.

∗http://www.di.ens.fr/ mschmidt/Software/code.html

Table 2: Performance comparison of three hierar-
chical classification methods on Caltech256 and IL-
SRVC1K. Classification performance is measured by
global accuracy (Acc), and testing efficiency is mea-
sured by average saved time cost (MTC).

Dataset HC SIB-HC ER-HC

Caltech256
Acc (%) 26.7 27.0 30.5
MTC (%) 91.5 91.1 67.1

ILSRVC1K
Acc (%) 9.4 9.6 11.2
MTC (%) 98.1 98.3 88.7

Table 3: Performance comparison of three hierar-
chical classification methods on ILSRVC1K. Local
classifiers are learnt on free-sampled web images.

HC SIB-HC ER-HC
Acc (%) 4.3 5.1 5.6
MTC (%) 98.2 97.9 89.4

Each image is represented using Locality-constrained Lin-
ear Coding (LLC) with densely sampled SIFT features [6].
We employ a visual vocabulary of 4,000 visual words, and
three level spatial partitions (1× 1, 2× 2 and 3× 1). Conse-
quently, the dimension of feature vector is 32,000. For each
node ci, a classifier fci(x) is learnt using linear SVM [7] on
training set. In addition, a multi-class logistic regression
model is learnt for each internal node on the validation set.

The testing instances are all from leaf nodes which are
contextually exclusive. Thus we evaluate the classification
performance using global accuracy among leaf nodes (Acc).
An instance is correctly classified when the annotated leaf
node hits the ground-truth. Similar to [5] where the effi-
ciency of HC is measured using one-vs-all approach as base-
line, we evaluate the efficiency using percentage of saved
time cost compared to one-vs-all approach. Since we adopt
linear SVM, the time cost is linear with the number of in-
volved classifiers. Thus the saved time cost is defined as
TC = 1− #model

#concept
, where #model and #concept denote the

number of activated classifiers and the number of concepts
in the hierarchy respectively. In this case, TC of one-vs-all
approach is 0. We further define MTC as the average saved
cost over all testing instances.

We use the standard hierarchical classification (HC) that
employs the highest-response-first strategy as our baseline.
Our proposed error recovered HC is referred to as ER-HC.
To investigate the impact of different committees, we im-
plement a simplified ER-HC by using only the candidate
nodes to form the committee (i.e., only sibling relationship
is considered). We denote this method as SIB-HC.

3.2 Performance on Benchmark Datasets
The results on two datasets are summarized in Table 2.

For Caltech256, ER-HC improves the baseline by 14%, while
by only taking the sibling relationship into account, SIB-
HC only improves the baseline slightly by 1%. This result
demonstrates the advantage of a larger committee which
postpones the decision making until more observations are
available and it is more confident to do so. In terms of
efficiency, ER-HC sacrifices more computational cost than
those of HC and SIB-HC, but the saved cost by 67.1% from
the one-vs-all approach is still considered significant, an indi-
cation that ER-HC achieves a better balance between com-
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Figure 2: Accuracy on Caltech256 by level

putational cost and accuracy. Similarly, for ILSRVC1K, ER-
HC outperforms HC and SIB-HC by 19% and 16.6% in accu-
racy respectively, while remaining satisfactory in efficiency
by saving 88.9% computational cost from the baseline. We
can see that the advantage of ER-HC on ILSRVC1K is more
obvious than that on Caltech256. This is due to the fact that
the hierarchy of ILSRVC1K is in a larger scale which includes
1,327 more concepts than Caltech256. Therefore, the SVM
models for nodes at higher levels of the ILSRVC1K hierarchy
are with much more complex or vague decision boundaries
than those in Caltech256, because more offspring concepts
are attached to each high level node which bring the in-
stances with more variances of visual appearances, and fi-
nally make the resulting classifier less reliable. In this case,
the semantic relationship verification and error recovery em-
bedded in MLR model of ER-HC are more necessary, be-
cause the error propagation is more serious.
To grasp more insights of the methods, we plot the ac-

curacy of each method at each hierarchy level on the two
datasets in Figure 2 and Figure 3 respectively. The error
propagation becomes more serious with the increase level of
depth, resulting in drop of accuracy. ER-HC has demon-
strated consistent superiority over HC and SIB-HC, con-
firming its ability to address the issue of error propagation.
Surprisingly, the performance of SIB-HC seems is better on
ILSRVC1K than on Caltech256. This again confirms our
analysis that the advantage of employing a committee for de-
cision making over the arbitrary highest-response-first strat-
egy will be more obvious when the classifiers of individual
nodes are weaker.

3.3 Cross-dataset Evaluation
We also study the feasibility of applying the proposed ap-

proach on classifiers learnt from non-expert labeled exam-
ples. These classifiers are usually “weaker” classifiers and
suffer from the problem of domain shift [9]. For this pur-
pose, we adopt the approach in [8] to automatically crawl
at most 1,000 positive training instances from Web for each
leaf category. As a result, there are around 950,000 images
being downloaded to train 1,645 classifiers. The results are
shown in Table 3. The advantage of the proposed approach
is more evidenced on classifiers that are learnt from these
noisy training samples. Compared to that in Table 2, the
accuracy of all methods degrades a lot. This is not sur-
prising because free-sampled Web images are noisy and the
domain-shift from training dataset to testing is more signifi-
cant, which make most of the classifiers unreliable. However,
ER-HC exhibits the best performance in accuracy with 27%
improvement over baseline. The proposed approach thus has
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Figure 3: Left: accuracy on ILSRVC1K by level.
Right: zoom-in from level 8 to level 13.

potential to be scalable to classifiers that are trained using
non-expert labels, which is an important feature for large-
scale multimedia applications as annotating training exam-
ples is a highly expensive process especially when thousands
of classifiers are in demand.

4. CONCLUSION
We have presented the error recovered hierarchical clas-

sification approach, which utilizes the semantic relationship
among concept nodes in a hierarchy for addressing the er-
ror propagation problem. The method has demonstrated
significant and consistent performance improvements over
conventional methods on Caltech256, ILSRVC1K, and free-
sampled Web image dataset, while maintaining a satisfac-
tory balance between efficiency and accuracy. Currently, we
only consider the single label hierarchy where leaf nodes are
contextually exclusive. Future work includes the extension
of current work for multi-label hierarchical classification. We
will also address the issue on reducing the error propagation,
for example, by traversing the tree starting from reliable in-
ternal nodes, rather than from the root node.
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