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Abstract

This paper proposes a new approach for the discovery of common patterns in a
small set of images by region matching. The issues in feature robustness, match-
ing robustness and noise artifact are addressed to delve into the potential of using
regions as the basic matching unit. We novelly employ the many-to-many (M2M)
matching strategy, specifically with the Earth Mover’s Distance (EMD), to increase
resilience towards the structural inconsistency from improper region segmentation.
However, the matching pattern of M2M is dispersed and unregulated in nature, lead-
ing to the challenges of mining a common pattern while identifying the underlying
transformation. To avoid analysis on unregulated matching, we propose localized
matching for the collaborative mining of common patterns from multiple images.
The patterns are refined iteratively using the expectation-maximization algorithm
by taking advantage of the ‘crowding’ phenomenon in the EMD flows. Experimen-
tal results show that our approach can handle images with significant image noise
and background clutter. To pinpoint the potential of Common Pattern Discovery
(CPD), we further use image retrieval as an example to show the application of
CPD for pattern learning in relevance feedback.
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1 Introduction

Huge amount of visual information in the form of digital images and video
databases is generated everyday. Extracting visually common patterns from
images is becoming increasingly important for various multimedia applica-
tions. The mined patterns can serve as the entry points for efficient browsing
of large visual databases, while enable effective clustering and search. Com-
mon Pattern Discovery (CPD) can be regarded as a superset problem of image
registration and pattern detection as shown in Figure 1. Given two images [
and J, image registration finds the best transformation 7" that aligns I and J.
Pattern detection, in addition to finding the optimal T, locates the subimage
J* of J that best matches I through the transformation 7. CPD extends both
problems to find the best match of a subimage I* in I with J* through an opti-
mal but unknown transformation 7. Compared to registration and detection,
CPD has no knowledge of I'*, J* and T which need to be simultaneously opti-
mized, leading to a dramatically inflated search space. CPD can be extended
to the multiple image case as shown in Figure 1(c). In general, more images
lead to more visual evidence for the discovery of common patterns. Given a
set of N images, I;—; n, the task of CPD is to find the subimages, I/, y
and their transformation parameters T;—; n which maximizes a particular
similarity function H. CPD can be formulated as follows

{T%, ];k}izl_“N = argmax H(Tl(]f), cees TN(I;[)) (1)
{Ti I} }i=1..N

CPD, by definition, is related to but different from the recent research in
visual category recognition [1]. CPD is a multiple image matching technique
that performs ‘exact’ object extraction while visual category modeling learns
the visual models of object categories that may cover a wide spectrum of
visual appearances. Although visual category recognition also looks for visually
consistent patterns in a group of images, it is generally a learning process
which uses a training set to capture the variability in appearances among the
objects either through discriminative or generative modeling. On the other
hand, CPD is a matching technique that finds deformed replicates of the same
object from a small set of unconstrained images. It performs vigorous search
to mine common patterns which might have undergone affine and photometric
transformation from images with background clutter. Despite the fundamental
difference, in practice CPD can be used as a pre-processing step for visual
category recognition. A good model for recognition can be learnt from common
patterns discovered in a training set.

Generally, CPD performs pattern mining in search of the optimum matching
at the sub-image level. It searches for an unknown subset of primitives from
an image that best matches all equally unknown subsets of all other images, in



Fig. 1. (a) Image registration: Given a template (first image), find the affine
transformation to the second image (second image). (b) Pattern Detection: Given
a template (first image), mine the sub-image and the transformation parameters
from a target (second) image. (¢) Common Pattern Discovery: Without any prior
information of the common pattern, mine the unknown common sub-images given
a set of images.

terms of the appearance and geometric consistency. A fundamental problem
why the problem is challenging is that the visual data is unstructured and
unordered, leading to ambiguity in grouping perceptually meaningful patterns.
The problem becomes even harder when input images also contain variations
in terms of viewpoint, affine transformations (translation, rotation, stretching
and scale), photometric transformations (color, illumination and shading) and
occlusion.

The challenges in CPD include feature robustness, matching robustness and
noise artefacts. For feature robustness, matching can be performed either
sparsely on a set of points at visually interesting locations picked by feature
detectors [2], or densely on a set of blocks from grid partitioning or a set of re-
gions generated from the segmentation of the image space, respectively. Having
a set of robust features against the variations of object appearance and trans-
formation is always difficult. Points, sampled at prominent locations, can only
sketch the outline of a common pattern but lack sufficient details especially
on homogeneous parts, thus sacrificing completeness. Blocks, uniformly and
densely sampled from whole image space, are not tolerant to scale change due
to rigid partitioning. Regions, adaptively and coherently segmented, preserve
completeness for matching. However, robustness is a major concern because
image segmentation is hardly perfect. Under such circumstances, the choice
of matching strategies becomes critical in order to overcome the structural
disparity due to image segmentation.

Depending on the mapping constraint being imposed, matching can be cate-
gorized into one-to-one (020), many-to-one (M20), one-to-many (O2M) and



many-to-many (M2M) matching. For CPD, 020 is the de facto matching
scheme [3-5,10] because unique pair-wise correspondences are useful to es-
timate the affine transformation between two common patterns. O20, how-
ever, is sub-optimal particularly for region matching since the erroneously
segmented regions cannot be effectively matched. For instance, due to imper-
fect segmentation, one region in an image ideally should match to a collection
of broken regions in another image. To tolerate structural perturbation due to
image segmentation, M2M appears as a more generalized matching strategy,
with 020, O2M and M20 as its special cases. M2M allows bidirectional par-
tial matching and thus is able to adaptively correlate two sets of fragmented
regions. For CPD which searches for common patterns at sub-image level,
M2M still poses serious challenge since the matching patterns of M2M could
be chaotic and unregulated in nature and warrants further investigations.

Noise artefacts could influence the decision of matching in several ways. Con-
fusion may arise when several semantically unrelated regions form a set of
well-aligned patterns that by chance well-correlates across the query images.
This occurs frequently when the background contains significant clutter and
a local optimization algorithm is used to solve the correspondence problem.
In the presence of noise, matching, particularly O20, would typically tolerate
irrelevant correspondences to achieve overall consistency, or removes relevant
but noise-inflicted correspondences. Noise artifacts could also exist in terms
of common background. For example, the object car always co-occurs with
the background concepts like road and people. In fact, by definition, the com-
mon background qualifies as a common pattern in its own right. In this case,
the use of negative images as additional information is necessary to guide the
mining of common patterns.

The remaining of the paper is organized as follows. Section 2 describes related
works while Section 3 gives an overview of our approach. Section 4 presents
our approach on incorporating the visual and spatial information for simi-
larity measure based upon Earth Mover’s Distance (EMD) while Section 5
further describes the employment of local EMD flows for mining common
patterns. The proposed approach, namely Local Flow Maximization (LFM),
iteratively mines the position and scale of common pattern across multiple
images through EM algorithm. Section 6 presents our experimental results,
while section 7 discusses the application of CPD to image retrieval. Finally,
Section 8 concludes this paper.

2 Previous Works

Previous works on CPD can roughly be categorized into three major direc-
tions. The first direction mainly focuses on graph-based techniques. Images are



first segmented into constellations of homogeneous regions and then converted
into graph representations such as the Attributed Relational Graph (ARG)
as shown in Figure 2. CPD can then be solved as a subgraph isomorphism
problem. In [3,4], Hong and Huang use a linear combination of graph model
components to handle the variations in the common patterns. Expectation-
maximization (EM) is then used to iteratively find the model parameters. In
[5], Jiang and Ngo proposed a backtrack depth first search algorithm to mine
for the maximal common subgraph from a set of ARGs. In [6], multiscale seg-
mentation tree is used as the representation of choice where geometric and
photometric attributes are taken into account when looking for the maximum
common sub-trees. Although the graph-based approaches provide a ready and
intuitive framework for CPD, its effectiveness is undermined by the ambigu-
ities resulting from segmentation. During this process, homogeneous regions
could be over-segmented into smaller pieces, and non-homogeneous regions
could be erroneously merged into a single region, as a result of imaging vari-
ations such as shading, scale, viewpoint and illuminations, or heuristic seg-
mentation settings. Figure 2 shows the structural inconsistency of the ARGs
generated by the segmentation step owing to illumination variation. In our
previous work [7], we show that EMD matching on the ARG of a segmented
image is less sensitive to the structural inconsistencies arising from image seg-
mentation. The common pattern is iteratively discovered as the local region
where the flows of the EMD maximize using EM.

The second direction adopts point-to-point (P2P) matching and avoids image
segmentation. Feature points which are similar in appearance and geometri-
cally consistent are extracted as the correspondences across images. On this
front, the work by Berg, Berg and Malik [8] provides the state of the art P2P
matching between a pair of images. They pose the correspondence between
two sets of points as an integer quadratic programming problem, where the
cost function is based on the local appearance and geometric distortion be-
tween pairs of corresponding points. The matching technique has been shown
to be successfully adapted for pattern detection (with exemplars manually se-
lected). However, when extended to automatic model building, a task equiva-
lent to CPD, it requires a large number of exemplars to statistically determine
significant points. Another important work is on semi-local affine parts for ob-
ject recognition [9] where groups of geometrically semi-local affine regions are
mined. Triplets of local affine regions (ellipse) form the basic matching units.
Triplets having similar appearance and consistent geometry in terms of the
ellipse orientations are matched and extracted. The matching pairs are then
locally grown by looking for similarly consistent neighbors. A validation set is
used to rank the local structure according to its repeatability. However, there
is an implicit assumption that the background is non-repeatable. In summary;,
it is unknown how robust these approaches are when the number of training
images are as few as 3 to 5 images, especially with the presence of background
clutter. In [10], Jiang and Ngo attempt CPD using a small set of training



Fig. 2. (a) Two original images with slight variation in illumination. (b) Segmented
version of (a) consists of several image segments in different colors. (c¢) Attributed
Relational Graphs (ARG) of (b). Each node of the ARG represents a segment
of the image, and the color of that segment is the attribute of the node. There
is an edge connecting two nodes if and only if the corresponding two segments
are adjacent to each other in the image. Slight variation in illumination results
in inconsistent ARG structures and connectivity. These inconsistencies would be
further aggravated when affine transformations are present.

images. Images are partitioned into grids of blocks and a color histogram is
extracted for each block. Given two images, a bipartite graph is constructed
with two sets of blocks. The Maximum Weighted Bipartite Graph (MWBG)
matching algorithm is employed for finding the block correspondences, while
procrustes analysis is adopted for finding the optimum transformation. The
optimizations of matching and transformation are carried out iteratively until
convergence.

Both the graph-based and point-based methods advocate matching as its un-
derlying strategy and agree that the common pattern is constructed from
multiple visual parts. The third direction, known as multiple instance learn-
ing (MIL) adopts a different approach and assumes that the common pattern
can be succinctly represented by a single feature vector. Sample features are
pooled from the image set to track the best point in the feature space to
represent the common pattern. In most MIL algorithms [11-16], the training
images are labeled as positive and negative bags, respectively, depending on



the existence of the common pattern. The training images are partitioned into
segments, and low-level features are extracted to form the bag-of-features. The
common pattern is found by locating a feature point near to most positive bags
but far from the negative bags. One popular technique is the Diverse Density
(DD) [11] where gradient ascent is employed to locate the optimal feature
point. MIL requires a large amount of training images for reliable statistical
analysis. In order to mine patterns that is invariant to various transformations,
a large and diverse set of features is extracted but this inevitably results in
the increase of noise in the feature pool. The estimation of an optimal feature
point becomes highly difficult in this setting. In addition, the capacity of a
feature vector to highlight the multiple variations in the common pattern is
questionable. MIL only operates in the feature space, and therefore suffers
from an over-reliance on the features for the description of a common pattern.
Compared to MIL, matching approaches are relatively robust for the capabil-
ity of excluding noises by considering both feature and geometric consistencies
as shown in our experiment later.

Other recent approaches are [17] and [18]. In [17], data mining approach has
been employed to rapidly discover frequent spatial keypoint configurations
from tens of thousands of candidates. In the approach, keypoints are initially
soft-quantized into discrete visual keywords and then frequent pattern mining,
specifically the Apriori algorithm, is employed to discover groups of keypoints
that are found to always co-exist within a localized neighborhood. In [18], a
random partitioning scheme is adopted where the image spaces are randomly
partitioned over many rounds. The subimages are then matched and the series
of popular images are aggregated to produce overlapping blocks known as
‘voting map’. The votes accumulated at each block are influenced by its size
as well as the number of correspondences to other blocks. The areas with high
concentration of highly popular blocks thus constitute the common pattern.

In this paper, we extend on our previous work in [7]. We employ negative sam-
ples (cf. Section 4.2) as a tool to overcome the common background problem
where background patterns that always coexist with the pattern of interest
are indistinguishable in the absence of any supplementary information. In [7],
the initial positions of the common patterns are estimated using the mean of
the flows of EMD matching conducted across the images. In this paper, we use
a weighted Parzen-window (cf. Section 5.3) to take into account the density
of the flows to derive a better initialization. In addition, a speedup technique
has been proposed (cf. Section 5.2) by tracking the candidate common pat-
terns to the best possible location without re-estimating the scale during each
iteration. Finally, more comprehensive experiments are carried out to further
confirm the effectiveness of the approach. This includes the application of
CPD to image retrieval tasks to illustrate its potential for vision-based tasks
(cf. Section 7).



3 Overview of Proposed CPD

Initialization
e k=0

o Estimate the initial position ¢

M-Step

e Predict a candidate common pattern P® for each image that gives
the optimum EMD matching result.
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position ¢*" determined from the E-Step or Initialization step.
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e Estimate the new position value ¢ from the flows of the EMD
matching among the candidate common pattern P* using the
fixed scale value s®.

NO In this step, an inner loop (fast-tracking) tracks the optimum
position through a series of EMD matching as follows

‘ Initial ¢

'

e Match the candidate patterns using EMD
e Recalculate ¢ by analysing the EMD flows

value ‘

'

NO

ocal similarity
value converges?

YES
v

(k)

Estimated ¢ value

y

Similarity
value
converges?

YES

v

Common pattern generated

Fig. 3. Our proposed method. The scale and centroid of the candidate common
pattern are updated iteratively during the maximization and expectation stage,
respectively.

In this paper, we propose CPD with image-segmented regions as units and
EMD as the M2M matching strategy. Region is chosen for its greater poten-
tial in describing a complete common pattern. The corresponding robustness



issue of region units is tackled with EMD which simulates M2M matching
to map erroneously segmented regions, resulting in a slightly more involved
matching pattern. The problem is formulated as a missing data problem, and
solved under expectation-maximization (EM) framework with the regions as
the observations, and the scale and centroid of a common pattern as missing
data, through the analysis of the flows of regions among images.

An overview of the proposed framework is shown in Figure 3. First, the ini-
tialization step predicts the initial position values ¢(¥) of the common patterns
(cf. Section 5.3). Then, the best scales s*) and positions c¢®) of the candi-
date common patterns P*) are updated iteratively during the maximization
(cf. Section 5.1) and the expectation (cf. Section 5.2) steps, respectively. The
estimation of c¢® is essentially a tracking process based upon a sucessive
chain of EMD matchings. In our approach, matching is performed locally in-
stead of globally, where candidate common patterns P®) are first predicted
from each positive example and then matched as a whole across multiple im-
ages. Localized matching is more tolerant to noise since the correspondences
from multiple regions from the predicted patterns are considered jointly, while
avoiding irrelevant correspondences from irrelevant regions which have been
ruled out by the prediction. At such granularity, the goodness of matching
is determined collectively as a bag of correspondences rather than assessing
each match pair individually. The predicted common patterns are iteratively
refined in subsequent iterations until an optimum solution is found.

To regulate the chaotic correspondence fabric, negative cues and spatial in-
formation is loosely embedded into the similarity measure for matching, thus
adding more descriptive power to the underlying features. This encourages
more flow transfer among the common patterns and less interactions with
irrelevant nodes. Tracking the detailed transformations of the common pat-
terns in different images aids the pattern mining process. However, in this
paper we consider only the scale and translation on common pattern during
mining. Knowing fine transformation parameters such as rotation, stretching
and reflection is not necessary since the ultimate goal is to locate the common
pattern. Obviously, the biggest challenge in localized matching is to effectively
pick the best candidate pattern for matching.

4 Many-to-Many Matching with Earth Mover’s Distance

4.1  FEarth Mover’s Distance

EMD measures the distance between two weighted point sets as a transporta-
tion problem [19]. A point set is normally referred to as a signature. EMD



strives to find the minimum amount of “work” to transport the weights from
the source (supplier) to the destination (consumer) signature. In the trans-
portation problem, a group of suppliers is required to provide a given amount
of goods to a group of customers, each with a given limited of capacity to
accept goods. For each supplier-customer pair, the cost of transporting a sin-
gle unit of goods is given. The transportation problem is to find the least-
expensive flow of goods from the suppliers to the consumers that satisfies the
consumers’ demand. EMD has been successfully adopted for various applica-
tions including image retrieval [19], database navigation [20], and low-level
image processing [21].

EMD exhibits M2M matching for its capability in transferring partial weights
between any two signatures. In our context, each signature refers to a set of
segmented regions. Each region is represented by (p;, w;), where p; is the mean
color value and wj; is the fraction of pixels in region ¢. From the perspective
of M2M, EMD can distribute and transfer the weight of a region to multiple
broken regions in the destination signature. Conversely, a region can accept
weights from multiple regions of the source signature. Give two signatures S =
{(s1,ws;)e--(Sm,ws,, )} and D = {(dy, wg,)-..(dn, wq, )}, EMD is formulated as:

EMD(S, D) = min WORK(S, D, F); 2)
WORK(S, D, F) iZdzst (i,7) x flow(i, j) (3)
=1 j=1

subject to the following constraints:

flow(i,j) >0, 1<i<m,1<j<n

NE

flow(i, 5) < ws,, 1<i<m
1

<.
Il

NgE

flow(i, j) < wa,, 1<i<n
1

%

Ms

> flow(i, j) = min(}_ ws,, Y wa,)
=1 j=1

J=1

Il
i

7

where F is a bag of flows with flow(i, j) representing the flow from region s;
in S to region d; in D and dist(i, j) is the dissimilarity measure between s;

and d;.

There are several properties of EMD that is favorable for CPD. First, it sup-
ports partial matching. Two signatures with different numbers of regions, each
having different size, can be aligned under many-to-many matching with EMD.
By one-to-one matching, the mapping between regions is incomplete and can
be unpredictable. In contrast, EMD enlightens the chance of matching a prop-
erly segmented region to a collection of broken regions in another image. Sec-
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ond, it can be proven that if the ground distance is a metric and the total
weights of two signatures are equal, then EMD is a true metric where non-
negativity, symmetry and triangular inequality holds. This allows embedding
the signatures into a metric space.

4.2 Constraining EMD flows through Spatial Relation and Negative Cues

EMD, nevertheless, is spatially unconstrained because regions are considered
separately during flow. This situation indeed risks random flows particularly
when the underlying features are not perfectly robust. Ideally, a fabric of
EMD flows should possess the following properties: (i) The flows among com-
mon patterns are closed and dense, leading to less association between actual
pattern and background. (ii) The flows among common patterns are char-
acterized by high similarity value. (iii) The flows among ‘common pattern-
background’ and ‘background-background’ patterns are characterized by low
similarity value. The correct prioritization of flows to satisfy the above re-
quirements can be enhanced by taking into account spatial information dur-
ing EMD matching. Tagging spatial information increases the discriminating
power of the underlying features. However, common backgrounds, violating
the third requirement, cannot be solved by powerful features alone. Such sce-
narios can be effectively handled by using cues from negative images to repress
the undesirable patterns.

Both the spatial information and negative cues can be introduced into EMD
matching through the distance measure dist(i, j), or conversely the similarity
measure sim(i,j) where sim(i,j) = 1 — dist(i,j). The spatial similarity is
measured by considering the neighborhood consistency when matching two
regions, formulated as a weighted combination of unary color similarity A,
and the neighborhood similarity h,,. A significance value S is further attached
to penalize regions with high proximity to the regions in negative images. The
use of negative images to measure the importance of each region is optional
but practically useful. Given regions ¢ and j from two signatures and the bag
of negative regions R~ from all negative images, the similarity measure sim
can be formulated as

sim(i, j) = min S(p) x h(i, j) (4)

p=1J

where regions suspected as background patterns are assigned lower S. The
region-pair similarity is given by

h(i,j) = a hy(i, §) + (1 = a) ha(i, j) ()
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and the significance value is formulated as

1 —maxh(p,r) if maxh(p,r)>T, Vr € R~
S(p) = (6)

1 otherwise

The parameter « is to weight the importance of color and spatial similarities,
while T' is to gate the ownership of a candidate region p. Both parameters
are set empirically. In order not to over-emphasize spatial constraint, we give
higher weight (=0.6) to color similarity. For the parameter 7', a higher value
is preferred (7=0.9) in order to exclude regions with high similarity to negative
images.

The measure h,, is based on the Euclidean distance in the CIE-L*a*b color
space. CIE-Lab color space is expressly designed so that short Euclidean dis-
tances correlate strongly with human color discrimination performance. The
measure h,, is

(7)

hai, ) = cap [—(D “’”)2]

v

where D is the Euclidean distance of the colors in the CIE-L*a*b color space
given by

D(i,j) = [(AL)? + (Da)? + (Ab)Y)z 8)

hy(i,7) is an exponential function with the steepness of the slope governed by
v, where two regions are regarded as totally non-similar and therefore can be
ignored when their distance exceeds 2. For our purpose, we set v to 30.

The neighborhood similarity, or more specifically spatial similarity, of two re-
gions is measured by matching their neighbors in the image space. For the re-
gion pair (4,7), we build a weighted bipartite graph (WBG), G, ; =< U,V, E >,
with U as a set containing the adjacent regions of region ¢, and V for region
j. The weight w,s of the edge e, connecting the neighbor region u, € U
and v, € V represents the color similarity between the two regions, defined
by Equation 7. The neighborhood similarity h,, is measured by performing a
maximum weighted bipartite matching [22] between the sets U and V. The
similarity, based upon two sets of neighbors, is measured as

hn(Z,j) = Z Wrs (9)

er,s GMU,V

where My y is the set of edges from the maximum matching of the weighted
bipartite graph built from U and V.
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5 Local Flow Maximization

The matching patterns of EMD are dispersed and unregulated in nature, re-
sulting in difficulties to expose the common pattern and identify their trans-
formation parameters. Finding common pattern by examining each correspon-
dence separately is susceptible to noise artifacts. This motivates the proposal
of a novel predictive approach where a candidate common pattern is initially
extracted from each positive image and then matched as a whole iteratively.
As such, CPD aims to find the optimum candidate common patterns of pos-
itive images that maximize the generic function H in Equation 1. Matching,
when analyzed at such granularity, is more tolerant to noise since the good-
ness of such matching is determined collectively over a set of correspondences.
Besides, when matching is localized, many distracting and irrelevant corre-
spondences have been discarded, resulting in more concentrated and precise
analysis.

The candidate common pattern is represented by its centroid and scale which
are unknown and have to be discovered to maximize H. One possible solution is
through multiple instance learning (MIL). A huge pool of candidate areas with
varying scale and centroid values are extracted and projected into a signature
space that endows the EMD distance metric. Then, an MIL algorithm can be
employed to learn the best instance as common pattern representation [23].
Nonetheless, such scheme is neither efficient nor effective with the presence
of noise artifacts. Instead, the proposed predictive approach adopts heuristic
search without generating a huge set of candidate areas.

We propose an algorithm, namely Local Flow Maximization (LFM), to find
common pattern by analyzing the EMD flows under the expectation-maximization
(EM) framework. Given a set of N positive images T = {I;}Y |, the set of
candidate common patterns P = {P;}V, characterized by both the centroid
c = {¢;}¥, and scale s = {s;}¥ |, is treated as the missing parameter. The set
of centroids c is hidden but can be inferred from the EMD flows F during
iteration n. In the expectation step, the collaborative mining of patterns is
performed through localized matching. For each image, the EMD flows be-
tween each candidate P; of image I; and Pj4; of other images are analyzed
for the estimation of ¢;. In the maximization step, the refined value of the
centroid ¢; is used to redefine the scale s; for the complete description of P;
that maximizes the CPD similarity function H. In deriving H which comes
in the form of a maximum likelihood function, two assumptions are made.
First, images are assumed independent given the presence of a common pat-
tern, denoted by C. Second, the distribution of P and ¢ are assumed to follow
an uniform distribution. By the standard EM formulation and Bayes theorem
without loss of generality, H is formulated as

13



H(P[P™) = Ec{logp(c, I[P, C)|P™.1,C}
= Z p(c|P™.1,C)log p(c,I|P,C)

_Zp c/P™,1,C) long i, I;|P;, C)

=1

B . p(Pilci, 1;, C)p(
_Zp( |P ,I,C) Zl p(Pi|C)
(

P\CZ,IZ,C) ¢i|C)p(L;|C)
= p c|P™ 1, c 1

Cz,]i|C)

sz c[P™.1,C) Zlogp Pilei, 1, C)

=1

= Z Z 6(Ci|7)i(n)7 I;,C) log p(Pilc;, I, C)

N
=> > 5(Cz‘|73i(n), I;,C) log p(Pile;, 1;, C)

i Ci

N
=3 8(&PM™M ¢, L) log p(Pylci, 1, C) (10)

where ¢; is assigned to a single location in the image space through delta
function §. The prior probabilities p(P;|C) could be used if ¢; and s; of I;
is known. In Equation 10, the maximization step finds the best candidate
common pattern P; that optlmlzes the likelihood function H through the
conditional probability p(P;|c;, F C ) given ¢;. The expectatlon step in turn
estimates the new value of the position ¢; from 731- . The algorithm iterates
between the two steps until H converges where H" ) — H(™ < ¢, The EM
algorithm is guaranteed to converge [24,25] as long as P* is chosen such that
HP*P™) > H(P™|P®™) although it might not necessarily be a global
maximum.

LFM can be viewed as a 2-class clustering problem where region units of
each image are collaboratively clustered into the common pattern or back-
ground class. In this aspect, it is similar to the K-Means algorithm. Regions
enclosed by a candidate common pattern correlates to the common pattern
and vice versa. Similarly, during each iteration, the ownership of each region
is iteratively refined until H is optimized through a variant of the expectation-
maximization algorithm. However, K-means operates primarily on feature
space while LEM operates on image space and additionally draws hints from
matchings. In LFM, there are no class centers upon which a distance mea-
sure facilitates assignments. Instead, the boundaries of the common pattern
as a localized area are adjusted by looking into the tendency of the EMD
flows. While the square mean error (SSE) for K-Means is determined based

14



on 020 correspondences, H is determined collectively from the fabric of M2M
correspondences.

5.1 Mazimization

In the maximization step, the set of candidate common patterns P from pos-
itive images that optimizes the maximum likelihood H is determined given
the estimated ¢ from the expectation step. From Equation 10, this step is
expressed as

P=arg max H(P|P™)
N
= arg max Z log p(Pilci, 1;, C) (11)

where the conditional probability p(P;|c;, I;,C) that contributes towards H
can now be defined in terms of pair-wise localized matching as follows

N
p(Pilei, 1;,C) =[] EMD(P;, P;) (12)

J=Lj#i

Clearly, getting the optimum set of P; is intractable and we have to resort to
non-linear optimization algorithms such as gradient ascent where additional
constraints are imposed on P;. The constraints include the minimum number
of pixels and the permissible area localized to ¢; over which P; could take
shape. However, using gradient ascent is computationally expensive because a
larger amount of EMD matching is involved during each hill-climbing iteration.
To improve speed efficiency, the localization of P; is performed on a discrete
set of candidate areas and the best candidate is selected as elaborated below.

The set of candidate common patterns that maximizes the conditional prob-
ability in Equation 11 does not always result in a semantically optimum scale
because of an inherent bias towards signatures composed of few segmented
regions. In fact, similarity might reach its maximal value at a trivial situation
where a signature consists of only one region representing a common pattern.
Weighted fusion or thresholding can be employed to handle the trade-off be-
tween weight and scale. Nonetheless, such schemes require heuristic settings
and undermine robustness. Instead, given an assorted set of scales in an in-
put image, the maxima of the first-order derivatives of the similarity values
from cross-matchings with other candidate common patterns is picked as the
optimum scale. This is coupled with a monotonic constraint on the similarity
value to preserve convergence.
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For pragmatic reasons, a bounding box centered on ¢; is used to represent P;.
Coverage can be improved at the expense of speed by employing more robust
shapes such as ellipse that offers a larger degree of freedom in terms of pose
and orientation. Given a positive image, a set of bounding box, ordered by
increasing widths and centered on the centroid ¢;, is generated. The candidate
common pattern is matched with candidates of all other positive images and
then averaged. A prominent drop in the similarity value while walking through
the scale is evident as shown in Figure 4 when the boundary box outgrows
the visually coherent common pattern, thus providing a robust choice for scale
selection.

— @ — Similarity Value
— @ — First order derivative of Similarity Value|
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Fig. 4. The matching similarity value, when P; is varied over a range of sorted
scales, experiences a prominent drop in similarity when the scale outgrows the
common pattern as highlighted by the ellipse.

5.2 Ezpectation

The loose embedding of spatial information into EMD matching encourages
the ‘crowding’ of high similarity flows at the spot that exhibits both struc-
tural and photometric resemblance among the candidate common patterns.
Realigning the centroid of the candidate common pattern towards such spot
given the candidate common pattern 731»(”) improves the probability density of
the flows, and thus leads towards the discovery of an exact common pattern.
The crowding spot ¢; is a single point in the image space expressed through
8(¢;/P™ .C, I) in Equation 10.

Given the optimum candidate common pattern P; from the maximization step,
the flows from the localized EMD matchings of these areas are collected, and
a refined value of ¢; for each image is computed as the weighted mean of each
location in the sub-image space. For each positive image I;, the collection of
flows F; having I; as the destination image, is extracted from the set of pairwise
EMD matchings of the optimum candidate common patterns, readily available
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(a) Original Images (b) Confidence Images

] :i

(c) Iteration 1 ) Iteration 2

:ll

(e) Iteration 3 ) Iteration 4

Fig. 5. Fast-tracking of ¢; to the best optimum position during the expectation step.
(n)

The scale value s; ’ remains the same during the whole process. The confidence
image shows the weight 1 of of all regions. The red cross shows the position of ¢;.

from the previous maximization step. Each pixel location x in the sub-image
space is weighted by accumulating the similarity of the flows to the region
that the pixel belongs to. Denoting F;, as the subset of flows that streams
into the region that the pixel = holds ownership, and sim(f) as the similarity
value of a flow f, the new centroid ¢; is formulated as the weighted mean of
each pixel as follows

b — erﬂ' T X U(x) (13>

' ZxEPi U(x)

where

n(z)= 3 sim(f) (14)

feFi,x

Inspired by the iterative closest points (ICP) algorithm in [26] and the flow
transformation (FT) algorithm in [27], ¢; is computed repeatedly using the
same scale in the expectation step, each time realigning the center of the
bounding box to the centroid value. Convergence is preserved through the
constraint that likelihood function increases monotonically during each itera-
tion. As a result, ¢; is pushed to the best possible location as shown in Figure 5.
This process is referred to as the fast-tracking of ¢; because it optimizes speed
by reducing the number of EM iterations.
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5.8 Initial Prediction of Common Pattern

As in conventional EM algorithms, LFM is sensitive to initialization. In LEM,
the initialization of the centroid CEO) of the set of common patterns P; is ob-
tained by analyzing the density of EMD flows conducted globally at the im-
age level. The EMD flows, although noisy, provide the initial cue for locating
common pattern. Given a set of R regions {r;}, in an image, the density
probability p,(z) of the pixel x can be estimated through the extrapolation
of the regions by means of weighted Parzen-window. Each region r; is repre-
sented by its centroid and weighted by a confidence value 7(r;). Using the same
methodology in the computation of n(r;) in Equation 14, 7(r;) is determined
by accumulating the similarity of EMD flows to r; and then normalized over
all other samples. Thus, CEO) can be assigned based on a maximum a posterior
criterion as follows

A9 = arg max p, (z) (15)

)

where the Parzen-window density estimate is given by

n(r;) ,x—x;

hdso(h )

(16)

1 n
pr(7) = n

=1

and h, is the size of the window width parameter which determines the
smoothness of the density function. A Gaussian kernel window is used and

@ is formulated as
2

1 4

o) = o= ()

As a result, the areas with high concentration of heavily weighted flows would
experience higher density value, and using the location with the maximum
density provides a good estimate of the initial centroid cl(-o).

6 Result and Experiments

We conduct both qualitative and quantitative assessment to verify the perfor-
mance of the proposed approach. We use F-measure [28,6] as the metric for
performance evaluation. F-measure is a popular measure used in Information
Retrieval (IR) as the weighted harmonic mean of precision and recall. For
CPD, precision measures the accuracy of detection, while recall measures the
ability of completely locating a common pattern. F-measure combines both
measures to provide only a single value that effectively quantify the quality of
the detected common pattern. Denoting G as the groundtruth pattern and D
as the detected pattern, F-measure is defined as

18



2 x recall x precision

F-measure = - (18)
recall + precision
where >
recall = area(¢ N D) (19)
area(G)
ND
precision = % (20)

In the experiments, a total of 14 common patterns is used for testing. For each
pattern, three positive images and one negative image are given for CPD.
To assess the robustness of proposed approach, large variations of location,
scale, rotation and viewpoint are introduced to common patterns during image
collection. To highlight the effect of noise to CPD, all images are shot under
complex background setting.

6.1 Performance Comparison

To assess the performance, we compare three approaches: MWBG [10], IMCS
[5], and our approach, namely LFM. MWBG employs one-to-one bipartite
graph matching to find correspondences between two sets of block uniformly
and densely extracted from images. Procrustes analysis is then performed to
estimate optimal transformation based on block correspondence. The match-
ing and transformation steps are iterated until H in Equation 1 optimizes.
IMCS operates on region units and poses CPD as a subgraph isomorphism
problem. The backtrack depth first search, a brute-force technique, is utilized
to mine maximum common subgraph from the ARG representations of im-
ages. Table 1 briefly summarizes the three compared approaches. For IMCS
and LFM, the tool in [29] is employed for image segmentation. For LEM, each
region is set to a minimum of 100 pixels, resulting in a range of 50 to 300 region
units. For IMCS, due to brute-force search, the setting has to be deliberately
tuned to less than 90 regions to achieve a reasonable speed.

Figure 6 presents the quantitative performance of different approaches. Over-
all, LFM outperforms both MWBG and IMCS in F-Measure with an average
score of 0.66 compared to 0.30 and 0.34 respectively, indicating the advan-
tages of using M2M coupled with a localized matching strategy over conven-
tional O20 matching techniques. M2M successfully exhibits dense matching
where the erroneously segmented regions can still be correctly matched with
EMD. IMCS, in contrast, employs O20 mapping and results in sparse match-
ing where the broken regions are left alone without correspondences. Figure 7
contrasts the matching robustness of M2M and O20. Through M2M matching
strategy, LFM is more tolerant to segmentation error and capable of match-
ing fragmented regions. MWBG, on the other hand, operates on block units
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Table 1
Summary of the CPD algorithms used in our experiment

Description LFM IMCS MWBG
Matching Unit Region Region Block (Point)
Matching Localized Graph P2P
Technique (M2M) (020) (020)
Features Color Color Color
Representation Weighted point set ARG Bipartite graph
Segmentation Yes No Not applicable
Tolerance

Negative Image Yes No No
Search Complexity Non-exhaustive Exhaustive | Non-Exhaustive
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Fig. 6. F-Measure performance among LFM, MWBG and IMCS.

and therefore is inherently sensitive to scale. From our observation, when
procrustes analysis is performed on correspondence pairs obtained through
bipartite graph matching, noise artefacts skew the computation of the trans-
formation parameters. Such errors propagate through the iterations and cause
ineffective mining.

Image segmentation often requires heuristic settings such as the minimum size
of a region. Figure 8 shows the performance of different approaches against the
“minimum size” heuristic. To highlight the effects of the heuristic, the patterns
are matched without interference from other artefacts especially large scale
variation and background clutter. The performance of IMCS is poor when
regions are over-segmented into ambiguous pieces. In contast, LFM yields an
almost constant F-measure, which indicates the resilience of M2M matching
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(a) Original segmented images

s F

(b) Common pattern by IMCS

) Common pattern by LEM

Fig. 7. Common patterns extracted by (b) IMCS and (c) LFM contrast the
matching robustness of O20 and M2M. In IMCS, O20 results in sparse matching
of erroneously segmented regions. LFM effectively utilizes EMD to densely match

these regions.
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Fig. 8. Sensitivity of different approaches when the constraint “minimum pixel per
region” is imposed during segmentation.

towards structural inconsistencies arising from segmentation. Figure 9 further
shows an example to contrast LEFM and IMCS under three different settings.

To illustrate the effectiveness of LFM, Figure 10 shows the ability of LFM
in locating common pattern in three iterations. The initial value of ¢ is
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(a) Input Images

e

&
—

(b) Common pattern by IMCS

(¢) Common pattern by LFM

Fig. 9. The mined patterns by (b) IMCS and (¢) LFM when the minimum size of
segmented regions is set to 50 (left), 100 (center) and 200 (right) pixels respectively.

manually placed in order to emphasize the power of LEFM even when the ini-
tialization encloses only a small portion of the common pattern. The location
of ¢ is marked by the cross (+) while the box shows the candidate common
pattern P . A new candidate common pattern is selected at the start of each
iteration in the maximization step. Then, ¢ is determined and iteratively
recomputed to push P™ to the most optimum location in the expectation
step. The resting positions of ¢ during each iteration are shown in the right
columns of the figure. In this experiment, we could see that ¢ successfully
converges to the common pattern within 3 iterations, accompanied by an au-
tomatic readjustment in the scale of the candidate common pattern.

Figures 11 and 12 show the robustness of LFM towards rotation and viewpoint
difference respectively under background clutter. LFM successfully locates the
common patterns despite the challenges. The spatial constraint we introduce in
EMD indeed enforces the orderly matching of regions, which led to more robust
localization and EM framework. However, the limitations of using bounding
box to represent common pattern is prominent when finding patterns such
as P5 under viewpoint variation in Figure 12(b). Intuitively, the performance
can be improved if other representations such circle or ellipse is used, with
the expense of computational cost. Figure 13 further shows the effectiveness
of LFM towards large scale changes, in addition to the rotation and viewpoint
variation. LFM is able to locate the common pattern, but with relatively lower
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(b) Start of iteration 1 (c) End of iteration 1

v % a

(d) Start of iteration 2 (e) End of iteration 2
(f) Start of iteration 3 (g) End of iteration 3
(h) CPD result

Fig. 10. Intermediate output of LFM iterations. The left column shows the selected
common pattern P during the expectation step while the right column shows its
resting position from the fast-tracking cycles in the maximization step.

recall for pattern with larger scale. Figure 14 shows the average F-measure of
LFM on the tested patterns when one of the positive images is transformed
with a predefined range of scales. LFM is relatively stable across various scale
changes with F-measure of approximately 0.6.

Figure 15 shows the robustness of LEM towards patterns with slight changes
in color under different lighting conditions, from the brightest setting in the
second image to the darkest setting in the fourth image. The common pat-
tern can be effectively mined as long as the variation is not too dramatic.
Severe variation in illumination impairs dense region matching, and the use
of sparse features such as corners or edges is more appropriate in these cases.
Figure 16 shows some challenging examples where the patterns are hidden in
highly cluttered backgrounds, and further obscured by scale, viewpoint and
rotation. LEM successfully highlights the common pattern despite such de-
manding environments. Some less desirable results are shown in Figure 17. In
pattern P13, an erroneous pattern is detected where the pattern in the second
image is trapped in a local maximum, while in P14, an inflated version of the
common pattern is detected. Apparently, LEM is sensitive to initialization and
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) Pattern P1

hﬁﬁ!ﬂ.

) Pattern P2

(c) Pattern P3

Fig. 11. Finding common patterns under rotations.

(a) Pattern P4

(c) Pattern P6

Fig. 12. Finding common patterns under viewpoint variation.

it is observed that the erroneous pattern in P13 is still visually similar to the
other two common patterns in terms of low level features.

Further evaluations are conducted with the common patterns subjected to the
combination of all noise. The patterns are obscured by rotation, scale, skew
and viewpoint with heavy background clutter. Evaluation is performed qual-
itatively through manual observation. CPD manage to consistently identify
the pattern-of-interest despite the difficulties as shown in Figure 18.

To assess the role of negative images, we repeat LFM by using only positive
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(b) Pattern P8

Fig. 13. Finding common patterns under scale changes, in addition to rotation and
viewpoint variation.
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Fig. 14. F-Measure of patterns when transformed over a range of scaling factor

(a) Pattern P9

Fig. 15. Finding common patterns under lighting variation.

images. The results show that the F-measure drops from 0.66 to 0.57. It is
observed that the impact towards recall is random but there is a consistent
drop in precision for almost all patterns. Indeed, negative images are passive
cues that do not assert any patterns as the common pattern, but rather rule
out irrelevant patterns through suppression of noise artefacts, resulting in a
more precise common pattern. However, negative images could be counter-
productive if inappropriately used, as observed in the evaluations on patterns
P13 and P14 where the performance of F-Measure drops by 0.28 and 0.15.
Such scenarios happen when negative images surpress the common pattern
instead of the intended background artefacts.
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(b) Pattern P12

Fig. 16. Finding common patterns superimposed on highly cluttered background.

(b) Pattern P14

Fig. 17. Results with erroeneous and sub-optimal patterns using LFM.

6.2 Speed Efficiency

The speed of LFM and IMCS is impacted by the number of regions. Table 2
shows their speed with different region settings. When the number of regions is
large, LFM is significantly faster than IMCS, but slightly slower than MWBG
which uses fixed amount of blocks rather than regions. LFM is less sensitive
to the increase of regions compared to IMCS.

XE\L/ZZng speed (seconds) for the pattern P3 using different segmentation settings
Minimum #pixel per region 150 175 200 300 400
Total number of regions 329 297 270 256 162
LFM 92.77 85.02 | 80.94 | 79.49 | 93.03
IMCS 2521.79 | 400.97 | 103.47 | 14.25 | 6.2
MWBG 72.63

The proposed LFM is essentially an efficient polynomial time algorithm. If B
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Fig. 18. CPD results on patterns with a variety of image noise
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iterations are required for LEM, the total running time is O(7T; + B(T,, +T¢)),
where T}, T,, and T, are the times spent for initialization, the maximization
and expectation step, respectively. These times are linearly dependent on the
EMD matching. Each EMD matching requires O(r® x log(r)) time where r is
the number of regions in the signatures [19]. Given N images, initialization
performs matching for N, = w times over all image-pairs. The expecta-
tion step is slower since image-pair matchings are repeated A times for the
fast-tracking iterations. The maximization step incurs the most computational
cost since image-pair matchings are repeated over all scale variations, resulting
inas,= w fold increase in computational time when a total of s scales is
used for analysis. In our experiments, s is 7, N is 3, r ranges from 30 to 200,
A from 2 to 20 and B from 3 to 6. The fast-tracking enhancement proposed
in the expectation step has been able to alleviate the cost by minimizing the

number of required iterations.

The running time of MWBG depends on the graph matching algorithm which
takes O(C'Bb?), where b; is the number of blocks in each image and B is the
number of iterations required for each run. The maximum weighted matching
has a time complexity of O(b?). For robustness purposes, MWBG is repeated
using (' different transformation initializations. On the contrary, the speed of
IMCS increases exponentially with the number of regions owing to brute-force
search. The time complexity for IMCS is O(2 x r;!) where r; is the number of
regions in the images.

6.3 Limitations and Future Directions

Since we do not consider variations such as rotation and stretching when per-
forming matching, our algorithm is unable to extract the full set of affine
parameters which might be useful for certain applications such as stereo cali-
bration. However, since our algorithm manages to produce a good localization
of the common patterns as demonstrated in our experiments, the affine pa-
rameters estimation can be carried out as a separate post-processing step in
a more concise manner on the mined patterns.

Due to the employment of color as the underlying feature for matching, our
approach is inevitably limited to objects with multiple regions. To be successful
on a different category of images, where the common pattern is encapsulated
within a single region unit with prominent shape or visual point details, it
is imperative to extend LFM to sparse matching on point features. Recently,
the local features based on keypoints [2,30,31] are shown to be powerful and
discriminative for a wide range of vision-related tasks. Coupled with sparse
matching techniques such as the Hungarian algorithm [22], Integer Quadratic
Programming matching [8] and One-to-One symmetric (OOS) matching [32] in
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place of EMD as the underlying matching tool, these features can be employed
by LFM to handle this class of images as well.

Finally, the current speed of LFM still cannot efficiently handle a large num-
ber of input images. It is interesting to explore how fast the variants of EMD
matching algorithms such as embedded EMD [33] can be employed to accel-
erate pattern matching.

7 Application of CPD to Image Retrieval

CPD can be exploited for relevancy feedback in retrieval, by collecting the
positive and negative labels of few images from users to refine search. The
learning task of relevance feedback [34-36] is normally tedious and needs to
be repeated for many rounds to arrive at a satisfactory result. With CPD, rel-
evance feedback is composed of three simple steps — coarse retrieval, CPD and
fine retrieval. The coarse retrieval performs an initial search through conven-
tional query-by-image search, for instance. The retrieved relevant images are
marked and then CPD is employed to mine the common pattern. The mined
common pattern is subsequently used as “query-by-pattern” for fine retrieval.
Query-by-pattern is a lazy process which commences only upon a request for
retrieval. In contrast, traditional retrieval systems are generally more active
where comprehensive models or indexing systems have to be put in place for
retrieval to be effective. The new paradigm focuses on engaging more inter-
action at contact time by encouraging users to supply more examples. CPD
is useful in this respect to highlight the important patterns for query. Indeed,
query-by-pattern is interesting for its potential to improve retrieval results,
even on an unprocessed database.

To demonstrate the effectiveness of CPD in retrieval, we use a database com-
posed of 1068 images with 14 common patterns. The common patterns are shot
under different background clutters, at varying viewpoints, rotation, scale and
lighting changes. To increase the diversity of the database, 200 random images
which do not have common patterns are added. For performance evaluation,
we compare four different approaches: (1) CPD with proposed LFM (2) DD
[12] and (3) EM-DD [13] and (4) Histogram intersection [37]. DD and EM-DD
are classical algorithms in multiple instance learning (MIL). In both algo-
rithms, each image is divided into overlapping blocks of three separate sizes
(15x15, 30x30, 40x40), which form the instances of a bag. DD and EM-DD
find a feature point which is common in positive bags while rare in negative
bags. The common pattern, embedded in a feature space, is mined through
gradient ascent. The search is repeated using multiple starting points to im-
prove robustness. As a baseline, histogram intersection using query-by-image
is used to justify the performance improvement of our approach.
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Fig. 19. Precision-recall performance of five different approaches.

In our approach CPD, the similarity between a mined common pattern and an
image is performed through histogram intersection during fine retrieval. For
DD and EMD-DD, we use the techniques proposed in [14] to perform query-
by-pattern. Basically, the located feature point, which represents the common
pattern, is used as the feature vector to retrieve images. In the experiments,
CPD uses 3 positive and 1 negative images for pattern mining. DD and EM-
DD, on the other hand, require more bags in order to be precise. As a results,
10 positive and 20 negative images are used.

Figure 19 shows the recall-precision curve of four different approaches, aver-
aged over 56 queries involving all fourteen patterns. Through experiments, we
demonstrate that CPD successfully retrieves common patterns embedded in
various backgrounds despite the high degree of variations in scale and rotation
in the database. A significant improvement over the baseline is observed indi-
cating the advantages of using pattern as the query for retrieval. Patterns are
more powerful in representing the semantic content of the images, as keywords
in representing text documents. Therefore, it is better positioned to capture
the intention of the users for searching. DD and EM-DD are not as good as
CPD in general because the mined pattern is less perfect compared to CPD.
Figure 20 shows the common pattern mined by CPD and DD respectively.

8 Conclusion

We have presented our approach for common pattern mining in multiple im-
ages. Several critical issues on matching including feature robustness, matching
robustness and noise artifact are discussed. We propose M2M with the aid of
EMD as the sensible matching technique when image-segmented regions are
used. To handle the unregulated matching patterns in M2M, we loosely em-
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Fig. 20. The mined common patterns by (a) CPD and (b) DD. In DD, the best of the
hypothesis mined at different initializations is selected. In (b), five best hypothesis
are shown.

bed the spatial information of region into the EMD similarity measure and
further propose the LFM framework. LFM adopts localized matching where
the candidate common pattern of each image is extracted and matched lo-
cally across multiple images. EM is used to iteratively refine the candidate
common pattern until the optimum patterns are mined. Experimental results
show that our proposed LFM is robust to image segmentation. To demon-
strate the potential of CPD for image retrieval, we also conduct experiments
to contrast retrieval with and without CPD. The experiments show the power
of query-by-pattern, especially with the aid of the proposed CPD technique,
in overcoming background clutter and various transformations for retrieving
the object-of-interest.
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