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Abstract. The concept of a documentary scene was inferred from the
audio-visual characteristics of certain documentary videos. It was ob-
served that the amount of information from the visual component alone
was not enough to convey a semantic context to most portions of these
videos, but a joint observation of the visual component and the audio
component conveyed a better semantic context. From the observations
that we made on the video data, we generated an audio score and a vi-
sual score. We later generated a weighted audio-visual score within an
interval and adaptively expanded or shrunk this interval until we found
a local maximum score value. The video ultimately will be divided into
a set of intervals that correspond to the documentary scenes in the video.
After we obtained a set of documentary scenes, we made a check for any
redundant detections.

1 Introduction

A rapid increase in digital video data over the past few years has given rise
to importance for video data indexing. The first step towards alleviating this
problem is organizing a video into semantically tractable units called scenes.
A scene is defined as a collection of shots that occur at the same location or
that are temporally unified. A shot is defined as an unbroken sequence of frames
taken from one camera. In [1, 2], scene change is detected by extracting visual
features such as chromatic edit detection feature and color feature from the video
(image sequence). Recently there has been interest in using both audio and visual
information for scene change detection. In [3], different audio classes are detected
sequentially, and this information is later combined with the probability value
for a visual cut detection. In [1], scene breaks are detected as audio-visual breaks,
where each break is based on dissimilarity index values calculated for audio, color
and motion features. Even in this case there is no specific audio-visual fusion
strategy.

In [5], they first obtain a set of audio scenes and a set of video (visual) scenes
by using different criteria for audio scene break and video (visual) scene break.
These breaks are then merged to obtain audio-visual scene breaks.
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We introduce the concept of a documentary scene and use an audio-visual
score value (which is a weighted combination of an audio score and a video score)
to divide the video into a set of documentary scenes. The audio score and the
visual score are generated by procedures evolved out of the observations that we
make on the video data. The video data that we used for making observations
and for experimenting is from the NIST Special Database 26.

The rest of paper is organized as follows. Section 2 introduces the concept
of documentary scene and then outlines the major steps of our approach. Sec-
tion 3 describes the generation of visual label patterns while Section 4 presents
a maximum-likelihood based method to generate audio class labels. Section 5 de-
scribes our audio-visual fusion strategy. Section 6 proposes an adaptive scheme
and redundancy check to detect documentary scene changes. Finally, Section 7
presents the experimental results and Section 8 concludes this paper.

2 Overview of Our Approach

In this section we define the concept of a documentary scene, which was inferred
by analyzing the video data. Critical observations made on the data will also be
stated. The proposed approach in this paper is then presented based on these
observations.

2.1 Concept of a Documentary Scene

The NIST videos show contiguous shots with little visual similarity while the
topic or the semantic context described by the audio remains same. Hence we
conclude that a documentary video can be modelled as a union of several seman-
tically tractable topic level units known as documentary scenes, where there is
a semantic correlation between the audio component and the visual component
of videos. The common observations from documentary videos include:

1. Within a documentary scene, similar video frames occur either contiguously
or with a temporal separation of some dissimilar frames; hence, the total
number of similar frames within an interval is a measure for a documentary
scene.

2. In most cases, the audio class label at the beginning of a documentary scene
is same as the audio class label at the end of a documentary scene.

3. In some cases the audio component has less information to contribute, while
visually there is a strong semantic correlation in the background image of
the video frames. For example as shown in Figure 1, the semantic context is
the discussion on a new project. The selected frames in Figure 1 show the
machine drawings associated with the project in background.

4. In most cases the visual pattern has a counterpart audio pattern. An audio-
visual sequence shown below explains this observation.

audio class :  speech «— speech+siren «— speech
visual sequence : aircraft < hanger fire <« officer speaking
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Fig.1. A few frames with a similar visual background
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Fig. 2. Proposed approach for detecting documentary scenes
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2.2 Proposed Approach

Based on the above observations, we propose a scheme, as illustrated in Fig-
ure 2, for detecting documentary scenes. Given a video, the proposed ap-
proach first generates a visual pattern (observation 1) and an audio pattern
(observations 2, 4) respectively based on similarity measures. Scene analysis (ob-
servation 3) will be conducted for foreground and background segmentation®.
The collected data from visual, audio and scene analysis will be integrated for
audio-visual fusion. The scene change detector is composed of two main steps:
adaptive scheme and redundancy check.

3 Generating Visual Label

In this section, we present the method for generating a visual label pattern. We
first perform shot boundary detection and then select the keyframes. Using the
auto-correlogram method described in [6], we label the keyframes extracted from
the video.

3.1 Selection and Labelling of Keyframes

To label the video keyframes, we first detect the shot boundaries using the
technique in [7]. Each shot is composed of several temporal units. We extract
a video frame at the middle of a temporal unit (30 frames) as a keyframe.
The video frame rate is 30 frames/s. The similarity measure for labelling the

! In this paper, we will not present the details of scene analysis, interested readers can
refer the details of our approach in [9, 10].
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keyframes is based on the color auto-correlogram [6] of keyframes. A critical
part of this algorithm is the appropriate selection of similarity threshold 7. In
our approach, we employ Neyman-Pearson hypothesis to determine ', which
will be elaborated later.

To label a keyframe Z(9, we find 3; = argming <;«; |I(i) -7 | If ‘I(i) —IB)| <
1, we label it with index 3; (Z(") is considered similar to Z(%)), else with i (Z(
is considered dissimilar to preceding frames). Where ‘I 1 IQ‘ denotes the auto-
correlogram distance measure between Z' and Z2. The example below shows
the original keyframe index and the resulting keyframe labels after applying the
algorithm:

Keyframeinder +— 1234567891011
Keyframe label <— 122456249 9 5

The above labelling pattern indicates that the keyframe with index 2 is similar
to the keyframe with index 3; hence the keyframe with index 3 also gets a label 2,
while the keyframe with index 4 is not similar to any of the 3 preceding keyframes
and hence gets a label 4.

3.2 Threshold Selection

We use the Neyman-Pearson hypothesis testing, which is explained in detail
in [8], to determine the value of threshold 7’. We first calculate the distances
between all combinations of the N images and we assume that the distances can
be modelled as two Gaussian distributions, corresponding to the similar and the
dissimilar images . The value of threshold 7’ is

W =0¢ Ha)+u (1)

where, o2, i are the variance and mean of the Gaussian distribution with
a larger variance. We assume that the larger variance Gaussian corresponds to
the dissimilar images.

1 T2
o)== [ Fa @)

a is the false alarm tolerance and ¢~ !(z) denotes the inverse of ¢(x).

In our case we have decided a false alarm tolerance of 5%, as it is a good trade off
between false alarm and the detection over a wide range of data; hence, « = 0.05.
Substituting a = 0.05 in Equation (1), we obtain a corresponding value for 7’.

4 Generating Audio Label

In this section we describe the generation of an audio class label pattern. We
select 3 videos from the total of 8 in the NIST database for training purposes.
The audio training data is annotated into 6 audio classes.
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4.1 Awudio Data Models

We manually segment the training data containing 3 different audio files that
are extracted as the audio stream of the video files, and then label each segment
as belonging to one of 6 different classes: speech, speech + music, music, speech
+ noise, noise, and silence. We employ a Gaussian mixture model [11] for audio
class identification. For each of these six audio classes, we first calculate a 30-
dimensional audio feature vector. The audio feature vector consists of 13 mel
frequency cepstrum coefficients. Another 13 components correspond to the first
derivative of the original 13 coefficients. Then we have the short time energy, the
short time zero crossing rate, and their first derivatives. We extract this feature
vector over all the audio files meant for training. Then we estimate a Gaus-
sian mixture model M; for the audio class ¢ which is defined by the parameter
set P; (s, Xi, w;), consisting of the mean vectors p;, covariance matrices X;, and
mixture weight vectors w;.

4.2 Class Label Identification

The goal of audio class label identification is to find the model M; that best ex-
plains each frame of the test data represented by a sequence of N audio frames
{fn}n=1,.,n. The audio frame rate is 100 frames/s. Maximum-likelihood crite-
rion is used for classification. The class label ¢, for frame f, is ¢, = arg max;
log pi(fnlpi, X, w;), where p; is the probability of a frame belonging to the
Gaussian mixture model P;(p;, X;, w;).

Similar to the visual data labelling explained in the previous section, we also
generate a counterpart audio class label pattern for N frames {f,}n=1,. n, as

{Cn}n=1,..,N-

5 Audio-Visual Fusion

In this section, we first define some terms that will be used for audio-visual fu-
sion with respect to the interval [s ], where s and ¢ denote the indices of video
keyframes. In the case of audio definitions we map the index to correspond-
ing audio frame. Appropriate weights are then statistically selected to linearly
combine audio and visual information for detecting documentary scene changes.

Visual Similarity Count: We denote the set of similar keyframes as V.S =
{Vi|Vi =V}, j # i}, the normalized visual similarity count vsc(s,t) is

VS|

’USC(S, t) = m

(3)

where |.| denotes the size of a set.
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Audio Similarity Count: AC),, is the number of audio frames € class m, the
normalized audio similarity count asc(s,t) is
maxXi<m<K ACm

t) = 4
ase(s,?) Number of audio frames in this interval 4)

where K is the total number of audio classes.

Audio Delta Function: This function returns 1 if the audio class of the frames
in the begining of the interval is same as those in the end. S; is the log-
likelihood of the audio class of the initial r audio frames, denoted as A; =
{@n}n=s, sir—1 belonging to the i'" audio class model. We have

s+r—1
S; =log pi(As|pi, X, w;) = Z log pi(an]|pi, X, wy). (5)

n=s

Furthermore, let T; denotes the log-likelihood of the audio class of the ending
r frames, denoted as Ay = {an fn=t—r+1,..+ belonging to the it" audio class
model. We have

t

T; = log pi(A¢|pi, Xi, wi) = Z log pi(an|pi, Xi, ws). (6)

n=t—r-+1
Finally, the audio delta function d,(s,t) is defined as
8a(s,t) =8(Ls — Ly). (7)

where Ly = arg max; S; is the label corresponding to the initial r frames,
and L; = arg max; T; is the label corresponding to the ending r frames.

Visual Delta Function: This function 6,(s,t) returns 1 if the video frames
between the keyframes within the index interval [s ¢] have a similar back-
ground. Figure 3 shows the detailed algorithm of this function. Each com-
mon background scene is represented as back;, and x; is used to represent
the start of back;, while y; represents its end. The details for finding the
common background scenes can be found in [9].

5.1 Audio-Visual Score

The audio score S, (s,t) is the sum of the audio similarity count, and the audio
delta function :
Sa(s,t) = asc(s,t) + dq(s,t). (8)

The visual score Sy(s,t) also is the sum of the visual similarity count, and the
visual delta function :

Sy(s,t) = vsc(s,t) + dy(s, t). 9)
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Input: {back;}i=1,...,n the set of common background scenes, interval
[s t], tolerance value €
Output: 0,(s,t)
l.fori=1,...,N do:
1.1 Initialize: d,(s,t) < 0
1.2 if |z; —s| <eand |y; —t| <e
1.3 then 0,(s,t) «— 1

Fig.3. Algorithm for visual delta function

The audio-visual score [12], S, (s,1) is a weighted combination of the audio
and visual score.

Sav(8,1) = wa Sa(s,t) + wy Sy(s,t). (10)

where w, is the audio weight, w, is the visual weight, and w, + w, = 1.

5.2 Selection of Mixture Weights

Since w, and w, can affect the result of audio-visual score, we apply a statistical
method to approximate their optimal values. We learn the optimal value of the
mixture weight w denoted as w°P! from the training data by minimizing a cost
function C'(w) which is the smoothed recognition error rate [13]:

Input: L + 1, A, entries.
- L + 1: The initial size of the interval [s t], which will be
either expanded or shrunk
- A: The step size by which the interval is each time
expanded or shrunk as shown in Figure 5
- entries: The index of the last keyframe in the video
as shown in Figure 5
Output: {documentary;}i—1,...~n a set of documentary scenes
1. Initializing the begining and end of the interval and its index:
s—1,t—L+1landi«1

2. while t < entries, perform the below steps:
21 if Sau(s,t) > {Sav(s,t + A) and Sav(s,t — A)} (indicates a local maximum)

2.2 documentary; «—[s t] (indicates the detection of documentary scene)
2.3 1 < i+ 1 (counting each detected documentary scene)

2.4 we re-initialize the interval: s «— t 4+ 1, «— s+ L — 1

2.5  else if Squ(s,t+ A) > Sau(s, t — A)

2.6 we expand the interval by A: ¢t — ¢4+ A

2.7  else we shrink the interval by A: ¢t +— ¢ — A

Fig. 4. Algorithm for adaptive scheme
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Score = S, (s,0)

index 1 s t- At t+ A entries

Fig. 5. The audio-visual score Sg, (s, 1) evaluated over the interval [s t] is com-
pared with the score evaluated over [s,t + A] and [s,t — 4]

RZHe{ sy 60 (11)

av

where A A A
Sep(w)=w S, + (1 —w) S,. (12)

S¢ is the audio score for the i‘" training clip, and S? is the visual score for the i'"
training clip. This cost function is evaluated by selecting R clips from the training
videos such that they do not correspond to a documentary scene. Minimizing
the cost function C(w) with respect to w, while substituting a positive value for
¢ results in w°P! = 0.7. Hence, the optimal value of audio weight w, = 0.7 and
the optimal value of the visual weight w, = 0.3.

6 Detecting Documentary Scene Change

6.1 Adaptive Scheme

In the adaptive scheme, the audio-visual score within an interval is first evalu-
ated. This interval will be adaptively expanded or shrunk until a local maximum
is found. The detailed algorithm can be found in Figure 4.

6.2 Redundancy Check

The visual delta function and the audio delta function tend to be the cause of
some redundant detections. In fact, certain redundant detections can be elimi-
nated by the careful investigation of neighbouring documentary scenes. To cope
with this problem, we merge neighbouring documentary scenes on the basis of
a new score. The audio-visual merging score S (s, ) is a weighted combination
of the audio similarity count and the visual similarity count:

SM(s,t) = wPt asc(s,t) + (1 — wP') vsc(s, t) (13)

The details of algorithm for redundancy check can be found in Figure 6.
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Table 1. Results at the end of the adaptive scheme stage for A=3

video A=3
Duration|Human Detections{Machine Detections{Number of hits
1 489 s 29 27 21
2 382's 13 22 6
3 523 s 11 14 8
4 743 s 22 40 9
5 493 s 14 28 5

Table 2. Results at the end of check for redundancy stage for A=3

video A=3
Duration|Human Detections|Machine Detections|{Number of hits
1 489 s 29 27 21
2 382 s 13 12 10
3 523 s 11 14 8
4 743 s 22 22 17
5 493 s 14 16 9

7 Experimental Results

The experimental data used is from NIST Special Database 26. Out of the eight
videos, three were used for training while the remaining five were used for testing.
We use Figure 7 to depict a detected documentary scene. In Figure 7, the top row,
from left to right, shows the award, a performer, and an instrument. The bottom
row shows President Clinton, the audience, and the award being handed over
with an industrial lab in the background. This documentary scene is a description
of the Malcolm Baldrige Quality Award. Although there are many visual changes
throughout this documentary scene, the underlying semantic context remains the
same.

Input: Result of the adaptive scheme {documentary;}i=1,...n
Output: The merged output set {documentary;}i=1,..,n

1. while i < N | do:
1.1 if S(%(Si,ti+1) > {Sav(si,t;) and Sav(Sit+1,ti+1)}
1.2 merge [s; t;] and [si1 tit1] @ documentary; < [s; tit1]
1.3 adjust the index and length: ¢ «— i —1, N «— N — 1
1.4 else go to the next documentary scene: i «— i + 1

Fig.6. Algorithm for redundancy check
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Fig. 7. A documentary scene from test video 2

We adopt recall and precision for the performance evaluation:
Number of hits
Human Detections

Number of hits
Machine Detections

recall =

(14)

precision = (15)
where, hit is defined as the detection by both human subjects and machine.
Tables 1 and 2 show the experimental results, by the adaptive scheme and re-
dundancy check, for A=3. As indicated in Tables 1 and 2, number of hits in
videos 2, 4 and 5 are increased after the redundancy check. The number of hits
remain the same for videos 1 and 3 before and after applying the redundancy
check. The recall and precision of the proposed approach on the five tested videos
can be found in Table 3.

We further investigate the effectiveness of the approach by varying the pa-
rameter A. The recall-precision values for A = 3 are constantly better than the
values for A =4 or 5, as indicated in Table 3.

Table 3. A comparison of recall - precision values for A = 3,4,5 after making
a check for redundancy

video A=3 A=4 A=5
recall[precision|[recall|precision||recall| precision
1 72 .78 .59 71 45 Ry
2 N .83 .54 .64 .62 .80
3 73 .57 .55 .40 45 .36
4 77 77 45 .56 41 45
5 .64 .56 .50 .54 43 .46
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8 Conclusion

We have presented a scheme out of certain observations that we made on the
audio-visual characteristics of documentary videos. This scheme is basically a two
stage process. In the first stage, we find a set of documentary scenes by a weighted
fusion of the audio score and the video score. In the second stage, we make a
check for any redundant detections, and, if any, we merge those documentary
scenes. It is observed through experiments that in the cases where the end of the
adaptive scheme itself gives optimal number of hits, even after making a check
for redundancy they remain unchanged. However, in the cases where there is
actually a redundancy in detection, merging neighbouring documentary scenes
actually increases the number of hits. This scheme has been successful in detect-
ing documentary scene changes, with each of them having a common underlying
semantic context. Future work would focus on how to identify this semantic
context probably by classifying them into few learnt categories.
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