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Boost K-Means
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Abstract—Due to its simplicity and versatility, k-means remains popular since it was proposed three decades ago. The performance of
k-means has been enhanced from different perspectives over the years. Unfortunately, a good trade-off between quality and efficiency
is hardly reached. In this paper, a novel k-means variant is presented. Different from most of k-means variants, the clustering
procedure is driven by an explicit objective function, which is feasible for the whole l2-space. The classic egg-chicken loop in k-means
has been simplified to a pure stochastic optimization procedure. The procedure of k-means becomes simpler and converges to a
considerably better local optima. The effectiveness of this new variant has been studied extensively in different contexts, such as
document clustering, nearest neighbor search and image clustering. Superior performance is observed across different scenarios.

Index Terms—clustering, k-means, incremental optimization
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1 INTRODUCTION

Clustering problems arise from variety of applications, such
as documents/web pages clustering [1], pattern recognition,
image linking [2], image segmentation [3], data compression
via vector quantization [4] and nearest neighbor search [5],
[6], [7]. In the last three decades, various clustering algo-
rithms have been proposed. Among these algorithms, k-
means [8] remains a popular choice for its simplicity, effi-
ciency and moderate but stable performance across different
problems. It was known as one of top ten most popular
algorithms in data mining [9]. On one hand, k-means has
been widely adopted in different applications. On the other
hand, continuous efforts have been devoted to enhance the
performance k-means as well.

Despite its popularity, it actually suffers from several
latent issues. Although the time complexity is linear to
data size, traditional k-means is still not sufficiently efficient
to handle the web-scale data. In some specific scenarios,
the running time of k-means could be even exponential
in the worst case [10], [11]. Moreover, k-means usually
only converges to local optima. As a consequence, recent
research has been working on either improving its clustering
quality [12], [13] or efficiency [14], [15], [16], [13], [17], [18].
K-means has been also tailored to perform web-scale image
clustering [2], [19].

There are in general three steps involved in the clus-
tering procedure. Namely, 1. initialize k cluster centroids;
2. assign each sample to its closest centroid; 3. recompute
cluster centroids with assignments produced in Step 2 and
go back to Step 2 until convergence. This is known as
Lloyd iteration procedure [8]. The iteration repeats Step 2
and Step 3 until the centroids do not change between two
consecutive rounds. Given C1···k ∈ Rd are cluster centroids,
{xi ∈ Rd}i=1···n are samples to be clustered, above proce-
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dure essentially minimizes the following objective function:

min
∑

q(xi)=r

‖ Cr − xi ‖2. (1)

In Eqn. 1, function q(·) returns the closest centroid for
sample xi. Unfortunately, searching an optimal solution
for the above objective function is NP-hard. In general k-
means only converges to local minimum [20]. The reason
that k-means maintains its popularity is mainly due to its
linear complexity in terms of the number of samples to
be clustered. The complexity is O(t·k·n·d), given t as the
number of iterations to converge. Compared with other
well-known clustering algorithms such as DBSCAN [21]
and Mean shift [22], this complexity is considerably low.
However, the efficiency of traditional k-means cannot cope
with the massive growth of data in Internet. In particular, in
the case that the size of data (m), the number of clusters (k)
and the dimension (d) are all very large, k-means becomes
unbearably slow. The existing efforts [16], [18] in enhancing
the scalability of k-means for web-scale tasks often come
with price of lower clustering quality. On the other hand,
k-means++ proposed in [12], [17] focuses on enhancing the
clustering quality by a careful design of the initialization
procedure. However, k-means is slow down as a few rounds
of scanning over the dataset is still necessary in the initial-
ization.

In this paper, a novel variant of k-means is proposed,
which aims to make a better trade-off between clustering
quality and efficiency. Inspired by the work in [1], a novel
objective function is derived from Eqn. 1. With the devel-
opment of this objective function, the traditional k-means
iteration procedure has been revised to a simpler form, in
which the costly initial assignment becomes unnecessary.
In addition, driven by the objective function, sample is
moved from one cluster to another cluster when we find
this movement leads to higher objective function score,
which is known as incremental clustering [1], [23]. These
modifications lead to several advantages.

• K-means clustering without initial assignment re-
sults in better quality as well as higher speed effi-
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ciency.
• K-means iteration driven by an explicit objective

function converges to considerably lower clustering
distortion in faster pace.

• Different from traditional k-means, it is not necessary
to assign a sample to its closest centroid in each
iteration, which also leads to higher speed.

In addition, when clustering in hierarchical bisecting
fashion, the proposed method achieves the highest scal-
ability among all top-down hierarchical clustering meth-
ods. Extensive experiments are conducted to contrast the
performance of proposed method with k-means and its
variants including tasks document clustering [1], nearest
neighbor search (NNS) with product quantization [4] and
image clustering.

The remainder of this paper is organized as follows.
The reviews about representative works on improving the
performance of traditional k-means are presented in Sec-
tion 2. In Section 3, the clustering objective functions are
derived based on Eqn. 1. Based on the objective func-
tion, Section 4 presents the clustering method. Extensive
experiement studies over proposed clustering method are
presented in Section 5. Section 6 concludes the paper.

2 RELATED WORKS

Clustering is a process of partitioning a set of samples into
a number of groups without any supervised training. Due
to its versatility in different contexts, it has been studied in
the last three decades [24]. As the introduction of Web 2.0,
millions of data in Internet has been generated on a daily
basis. Clustering becomes one of the basic tools to process
such big volume of data. As a consequence, traditional
clustering methods have been shed with new light. People
are searching for clustering methods that are scalable [16],
[17], [18] to web-scale data. In general, boosting the per-
formance of traditional k-means becomes the major trend
due to its simplicity and relative higher efficiency over other
clustering methods.

In general, there are two major ways to enhance the
performance of k-means. For the first kind, the aim is to
improve the clustering quality. One of the important work
comes from Ostrovsky et al. [12], [17]. The motivation is
based on the observation that k-means converges to a better
local optima if the initial cluster centroids are carefully
selected. According to [12], k-means iteration also converges
faster due to the careful selection on the initial cluster
centroids. However, in order to adapt the initial centroids
to the data distribution, k rounds of scanning over the data
are necessary. Although the number of scanning rounds has
been reduced to a few in [17], the extra computational cost
is still inevitable.

In each k-means iteration, the processing bottleneck is
the operation of assigning each sample to its closest cen-
troid. The iteration becomes unbearably slow when both the
size and the dimension of the data are very large. Noticed
that this is a nearest neighbor search problem, Kanungo
et al. [14] proposed to index dataset in a KD Tree [25] to
speed-up the sample-to-centroid nearest neighbor search.
However, this is only feasible when the dimension of data
is in few tens. Similar scheme has been adopted by Dan

et al. [26]. Unfortunately, due to the curse of dimensionality,
this method becomes ineffective when the dimension of data
grows to a few hundreds. A recent work [18] takes similar
way to speed-up the nearest neighbor search by indexing
dataset with inverted file structure. During the iteration,
each centroid is queried against all the indexed data. At-
tributing to the efficiency of inverted file structure, one to
two orders of magnitude speed-up is observed. However,
inverted file indexing structure is only effective for sparse
vectors.

Alternatively, the scalability issue of k-means is ad-
dressed by subsampling over the dataset during k-means
iteration. Namely, methods in [16], [27] only pick a small
portion of the whole dataset to update the cluster centroids
each time. For the sake of speed efficiency, the number of
iterations is empirically set to small value. It is therefore
possible that the clustering terminates without a single
pass over the whole dataset, which leads to higher speed
but also higher clustering distortion. Even though, when
coping with high dimensional data in big size, the speed-up
achieved by these methods is still limited.

Apart from above methods, there is another easy way
to reduce the number of comparisons between samples
and centroids, namely performing clustering in a top-down
hierarchical manner [1], [28], [29]. Specifically, the clustering
solution is obtained via a sequence of repeated bisections.
The clustering complexity of k-means is reduced from
O(t·k·n·d) to O(t·log(k)·n·d). This is particularly significant
when n, d and k are all very large. In addition to that, another
interesting idea from [1], [29] is that cluster centroids are
updated incrementally [1], [23]. Moreover, the update pro-
cess is explicitly driven by an objective function (called as
criterion function in [1], [29]). Unfortunately, objective func-
tions proposed in [1], [28], [29] are based on the assumption
that input data are in unit length. The clustering method is
solely based on Cosine distance, which makes the clustering
results unpredictable when dealing with data in the general
l2-space.

In this paper, a new objective function is derived directly
from Eqn. 1, which makes it suitable for the whole l2-
space. In other word, objective function proposed in [1]
is the special case of our proposed form. Based on the
proposed objective function, conventional egg-chicken k-
means iteration is revised to a simpler form. On one hand,
when applying the revised iteration procedure in direct k-
way clustering, k-means is able to reach to considerably
lower clustering distortion within only a few rounds. On the
other hand, as the iteration procedure is undertaken in top-
down hierarchical clustering manner (specifically bisecting),
it shows faster speed while maintaining relatively lower
clustering distortion in comparison to traditional k-means
and most of its variants.

3 CLUSTERING OBJECTIVE FUNCTIONS

In this section, the clustering objective functions upon which
our k-means method is built are presented. Basically, two
objective functions that aim to optimize the clustering re-
sults from different aspects are derived. Furthermore, we
also show that these two objective functions can be reduced
to a single form.
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3.1 Preliminaries

In order to facilitate the discussions that are followed, sev-
eral variables are defined. Throughout the paper, the size of
input data is given as n, while the number of clusters to be
produced is given as k. The partition formed by a clustering
method is represented as {S1, · · · , Sr · · · , Sk}. Accordingly,
the sizes of clusters are given as n1, · · · , nr, · · · , nk. The
composite vector of a cluster is defined as Dr =

∑
xi∈Sr

xi.
The cluster centroid Cr1 is defined by its members,

Cr =

∑nr

i=1 xi
nr

=
Dr

nr
(2)

The inner-product of Cr is given by C ′rCr =
(
∑nr

i=1 xi)
′(
∑nr

i=1 xi)
n2
r

, which is expanded as following form.

C ′rCr =
1

n2r
[(x′1x1 + · · ·+ x′1xi + · · ·+ x′1xnr )+

(x′2x1 + · · ·+ x′2xi + · · ·+ x′2xnr
)+

· · ·
(x′ix1 + · · ·+ x′ixi + · · ·+ x′ixnr

)+

· · ·
(x′nr

x1 + · · ·+ x′nxi + · · ·+ x′nr
xnr

)]

=
1

n2r
(
nr∑
i=1

x2i + 2
nr∑

i,j=1&i<j

< xi, xj >)

Re-arrange the above equation, we have
nr∑

i,j=1&i<j

< xi, xj >=
1

2
(nr

2·C ′rCr −
nr∑
i=1

x2i ). (3)

The sum of pairwise l2-distance within one cluster is given
as

S = (nr − 1)
nr∑
i=1

x2i − 2·
nr∑

i,j=1&i<j

< xi, xj > . (4)

Plug Eqn. 3 into Eqn. 4, we have

S = (nr − 1)
nr∑
i=1

x2i − (nr
2·C ′rCr −

nr∑
i=1

x2i )

= (nr − 1)
nr∑
i=1

x2i − nr2·C ′rCr +
nr∑
i=1

x2i

= nr

nr∑
i=1

x2i − nr2·C ′rCr.

(5)

Eqn. 5 is rewritten as

S = nr

nr∑
i=1

x2i −D′rDr. (6)

3.2 Objective Functions

In this section, two objective functions (also known as
criterion functions [1]) are developed. In addition, with
the support of the results obtained in Section 3.1, these
objective functions will be reduced to simple forms, which

1. We refer to as column vector across the paper.

enable them to be carried out efficiently in the incremental
optimization procedure.

According to [1], objective functions are categorized
into two groups. One group of the functions considers the
tightness of clusters, while another focuses on alienating
different clusters. In this paper, we focus on producing a
clustering solution defined over the elements within each
cluster. It therefore does not consider the relationship be-
tween the elements assigned to different clusters.

The first objective function we consider is to minimize
the distance of each element to its cluster centroid, which is
nothing more than the objective function of k-means.

Min. I1 =
∑

q(xi)=r

‖ Cr − xi ‖2

=
k∑
r=1

∑
xi∈Sr

d(xi, Cr).

(7)

The above equation is simplified as

Min. I1 =
k∑
r=1

(
nr∑
i=1

x′ixi + nrC
′
rCr − 2

nr∑
i=1

x′iCr)

=
k∑
r=1

(
nr∑
i=1

x′ixi +
D′rDr

nr
− 2

D′rDr

nr
)

=
k∑
r=1

(
nr∑
i=1

x′ixi −
D′rDr

nr
)

=
k∑
r=1

nr∑
i=1

x′ixi −
k∑
r=1

D′rDr

nr

=E −
k∑
r=1

D′rDr

nr

(8)

Since the input data are fixed, E is a constant. As a result,
minimizing Eqn. 8 is equivalent to maximizing following
function

Max. I∗1 =
k∑
r=1

D′rDr

nr
. (9)

Although objective function in Eqn. 9 is in the same form
as the first objective function in [1], they are derived from
different initial objectives. More importantly, in our case,
there is no constraint that input data should be in unit
length.

The second internal objective function that we will
study minimizes the sum of the average pairwise distance
between the elements assigned to each cluster, weighted
according to the size of each cluster.

Min. I2 =
k∑
r=1

nr(
2

nr·(nr − 1)

∑
di,dj∈Sr&i>j

d(xi, xj)) (10)

Plug Eqn. 6 in, we have

Min. I2 =
k∑
r=1

nr(
2

nr·(nr − 1)
(nr

nr∑
i=1

x′ixi −D′rDr))

=
k∑
r=1

2nr
nr − 1

nr∑
i=1

x′ixi − 2
k∑
r=1

D′rDr

nr − 1

(11)
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In Eqn. 11, nr

nr−1 is close to 1, the above criterion function
can be approximated as

Min. I2 ≈ 2E − 2
k∑
r=1

D′rDr

nr
. (12)

Similar as Eqn. 8, since the input data are fixed, E is a
constant. As as result, minimizing Eqn. 12 is equivalent to
maximizing function

Max. I∗2 ≈
k∑
r=1

D′rDr

nr
. (13)

Noticed that similar optimization objectives have been
discussed under Cosine similarity measure in [1]. As it is
shown that above two objective functions are the same in
the paper. This is different from the result obtained in our
case (general l2-space). As shown above, in l2-space, the
objective functions for I∗1 and I∗2 are only approximately
the same. The advantage that two objective functions are
reduced to the same form is that, when we try to optimize
one objective function, we optimize another in the mean
time. Specifically, when we minimize the distances from
elements to their cluster centroid, the average intra-cluster
distance is minimized in the meantime. Since these two
objective functions can be simplified to the same form, only
objective function I∗1 is discussed in the rest of paper.

Although objective function in Eqn. 9 is derived from
Eqn. 1, the former is much easier to operate in the incre-
mental k-means procedure. As it will be shown in the next
section, it is quite convenient to evaluate whether Eqn. 9
attains a higher score (implies lower distortion in terms of
Eqn. 1) when a sample xi is moved from one cluster to
another.

4 K-MEANS DRIVEN BY OBJECTIVE FUNCTION

In this section, with the objective function developed in
Section 3, two iterative clustering procedures are presented.
Namely, one produces k clusters directly (called as direct
k-way k-means), while another produces k clusters by bi-
secting input data sequentially k-1 times (called as bisecting
k-means). Both clustering strategies are built upon incre-
mental clustering [1], [23] and driven by objective function
I∗1 (Eqn. 9).

4.1 Clustering Algorithm
The basic idea of incremental clustering is that one sample
xi is moved from cluster Su to Sv as soon as this movement
leads to higher score of objective function I∗1 . To facilitate
our discussion, the new function value as sample xi is
moved from Su to Sv is formulated as following.

I∗1 (xi) =
(Dv + xi)

′(Dv + xi)

nv + 1
+

(Du − xi)′(Du − xi)
nu − 1

=
D′vDv + 2x′iDv + x′ixi

nv + 1
+
D′uDu − 2x′iDu + x′ixi

nu − 1

=2x′i
Dv

nv + 1
− 2x′i

Du

nu − 1
+
D′vDv

nv + 1
+
D′uDu

nu − 1
+

x′ixi
nv + 1

+
x′ixi
nu − 1

(14)
In each iteration of the clustering, sample xi is randomly
selected. The algorithm checks whether moving xi from its

current cluster to any other cluster will lead to higher I∗1
(i.e., ∆I∗1 > 0). If it is the case, xi is moved to another
cluster. The clustering procedure is detailed in Alg. 1.

As seen from Step 3 of Alg. 1, the initialization of our
method is different from most of the current practice of k-
means, there is no assignment of each sample to its closest
initial centroid. On the contrary, each sample xi is assigned
with a random cluster label (ranges from 1 to k). This allows
to calculate an initial score of I∗1 and the composite vector
D of each cluster. It is possible to do the initial assignment
following the way of k-means or k-means++ [12]. However,
as will be revealed in Section 5, initialization under either k-
means manner or k-means++ manner improves the cluster-
ing quality slightly. However, extra computation is required
in such kind of initial assignment.

During each iteration, each sample xi ∈ X is checked
in random order. The optimization in Step 8-10 seeks the
movement of xi that leads to highest increase of function
score. From the optimization point of view, the algorithm
reduces the clustering distortion greedily. From another
point of view, the seeking process is comparable to the
sample-to-centroid assignment in traditional k-means. They
are actually on the same computational complexity level.

Whereas it is not necessary that we must seek the best
movement for xi. As we discover by experiment, it is
feasible that moving xi to another cluster as long as we find
∆I∗1 (xi) is greater than 0. On one hand, this will speed-up
the iteration. On the other hand such kind of scheme usually
takes more rounds to reach to the same level of distortion.
However, we discover that such kind of less greedy scheme
results in lower clustering distortion if the iteration loops
for sufficient number of times.

Moving xi from one cluster to another (Step 9) is very
convenient to take. It includes the operation that updates
the cluster label of xi and the operation that updates the
composite vector for cluster Sv and Su, viz., Dv = Dv + xi,
Du = Du − xi.

Note that this incremental updating scheme is essen-
tially different from online learning vector quantization
(LVQ) [30], in which the cluster centroids are updated
incrementally. In the above iteration procedure, no cluster
centroids are explicitly produced. As a result, there is no
need to update cluster centroid. The clustering iteration
is explicitly driven by an objective function rather than
driven by the discrepancy between cluster centroids and
their cluster members. As revealed later in the experiment,
compared to LVQ, Alg 1 is more efficient and leads to
considerably lower distortion.

Algorithm 1. Direct k-way Boost k-means

1: Input: matrix Xn×d
2: Output: S1, · · ·, Sr, · · ·Sk
3: Assign xi ∈ X with a random cluster label;
4: Calculate D1, · · ·, Dr, · · ·Dk and I∗1 ;
5: while not convergence do
6: for each xi ∈ X (in random order) do
7: Seek Sv that maximizes ∆I∗1 (xi);
8: if ∆I∗1 (xi) > 0 then
9: Move xi from current cluster to Sv ;

10: end if
11: end for
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Fig. 1. Illustration of direct k-way k-means clustering with Alg. 1. The clustering process starts from the state that samples are all assigned with
random label. The final cluster centroids in (c) form a convex partition over the 2D space, which are called as Voronoi diagram. According to Lloyd ’s
condition, all the samples belonging to one cluster fall into the same Voronoi cell.

12: end while
end

Figure 1 illustrates three iterations of Alg. 1 in 2D case.
As shown in the figure, the initial clutsering result is ran-
dom and messy. Samples belonging to different clusters
are totally mixed up. However, only after one round of
iteration, the clustering result becomes much more compact.
The clustering terminates at the 10th round, where Lloyd’s
condition is reached. The optimality of this procedure is
analyzed in Appendix A and its convergence is proved in
Appendix B.

Overall, method presented in Alg. 1 is different from
traditional k-means in three major aspects. Firstly, no initial
assignment is required. Moreover, the egg-chicken loop in
the traditional k-means has been replaced by a simpler
stochastic optimization procedure. Furthermore, unlike tra-
ditional k-means, it is not necessary to seek the best move-
ment for each sample in the iteration.

The method presented in Alg. 1 is on the same complex-
ity level as traditional k-means (i.e., O(t·n·d·k)), which is
unbearably slow when dealing with large-scale data.

The method is revised into a top-down hirarchical clus-
tering version for large-scale clustering. Specifically, at each
time, one intermediate cluster is selected and bisected into
two smaller clusters by calling Alg. 1. The details of this
method are given in Alg. 2.

As shown in Alg. 2, priority queue Q pops out one
cluster for bisecting each time. As discussed in [29], there
are basically two ways to organize the priority queue. One
can prioritze the cluster with biggest size or the one with
highest average intra-cluster distance to split. Similar as [29],
we find splitting the biggest cluster usually demonstrates
more stable performance. As a result, the queue is sorted in
descending order by the cluster sizes in our practice.
Algorithm 2. Bisecting Boost k-means

1: Input: matrix Xn×d
2: Output: S1, · · ·, Sr, · · ·Sk
3: Treat X as one cluster S1;
4: Push S1 into a priority queue Q;
5: i = 1;
6: while i < k do
7: Pop cluster Si from queue Q
8: Call Alg. 1 to bisect Si into {Si, Si+1};

9: Push Si, Si+1 into queue Q;
10: i = i + 1;
11: end while

end

It is possible to partition the intermediate cluster into
more than two clusters each time. In the following, we are
going to show that this bisecting scheme achieves highest
scalability among all alternative top-down secting schemes.

4.2 Scalability Analysis
In this section, the computation complexity of Alg. 2 is
studied by considering the total number of comparisons
required in the series of bisecting clustering. The number
of iterations in each bisecting is assumed to be a constant by
taking the average number of iterations.

In order to facilitate the analysis while without loss
of generality, we assume that each intermediate cluster in
Alg. 2 is partitioned evenly. In addition, we generalize Alg. 2
to an s-secting algorithm. Namely, an intermediate cluster
is partitioned to s (s ≥ 2) clusters. Now we consider the
size of series of intermediate clusters that are produced
when performing sequential secting. Given q is the depth
of splitting, it is easy to see d logs ke = q+ 1. The sizes of all
intermediate clusters are given as following.

n,
n

s
,
n

s
, ..︸ ︷︷ ︸

s

,
n

s2
,
n

s2
, ...︸ ︷︷ ︸

s2

, .....,
n

sq
,
n

sq
, ...︸ ︷︷ ︸

sq

As a result, the number of samples to be visited during the
clustering procedure is

n+
n

s
∗ s1 +

n

s2
∗ s2 +

n

s3
∗ s3.....+ n

sq
∗ sq

=n+ n+ n+ n+ ...+ n︸ ︷︷ ︸
q

=n ∗ (1 + q)

≈n ∗ logs k.

(15)

Considering that one sample has to compare with s − 1
centroids each time, the total number of comparisons is

n ∗ (s− 1) ∗ logs k. (16)

Given n and k are fixed, Eqn. 16 increases monotonically
with respect to s. As a result, the number of comparisons
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(a) the 1st round bisecting (b) the 2nd round bisecting

Fig. 2. Illutration of two consecutive bisecting in the bisecting clustering
where Lloyd ’s condition breaks.

reaches to the minimum (i.e., n log2 k) when s = 2. To this
end, it is clear that bisecting is the most efficient secting
scheme.

Compared with Alg. 1, the complexity of Alg. 2 is re-
duced to O(t̄·n·d·log(k)), where t̄ is the average number of
iterations in each bisecting. Compared with t in traditional
k-means, t̄ is much smaller given the scale of clustering
problem is much smaller in terms of both the size of input
data and the number of clusters to be produced. As a result,
the complexity of Alg. 1 has been largely reduced since term
n·d has been multiplied by a much smaller factor t̄·log(k).

Although Alg. 2 is efficient, the clustering result pro-
duced by Alg. 2 unfortunately does not satisfy with Lloyd’s
condition. This problem is illustrated in Figure 2. As one of
the clusters is further partitioned into two (from Figure 2(a)
to Figure 2(b)), the partition over 2D space is formed by
centroids changes. Cluster C claims bordering points from
cluster B. However, points from cluster B cannot be reas-
signed to cluster C if no further intervention is involved.
This is actually an underfitting issue and exists for any
hierarchical clustering method. Fortunately, this issue can
be alleviated by adopting Alg. 1 as a refinement procedure
after Alg. 2 outputs k clusters. To do so, extra time is re-
quired. It therefore becomes a problem of balancing between
efficiency and quality.

According to our observation, it is possible to further
speed-up the proposed boost k-means. After a few iter-
ations, both k-means and boost k-means will be trapped
in a local minima. Only samples that bordering between
different clusters should be shuffled from one cluster to
another. As a result, given a sample, it is no need to search
for the best movement among k clusters. Instead, sample
only needs to compare with top-k0 (k0 � k) centroids to
search the suitable movement. We find that, this simple
modification typically leads to 7∼8 times speed-up while
without significant performance degradation.

5 EXPERIMENTS

In this section, the effectiveness of proposed clustering
method, namely boost k-means (BKM) is studied under dif-
ferent scenarios. In the first experiment, dataset SIFT1M [5]
is adopted to evaluate the clustering quality. In the second
experiment, BKM is tested on the nearest neighbor search
task based on product quantizer (PQ) [5] in which this
method is adopted for quantizer training. In the third ex-
periment, BKM has been applied to traditional document
clustering. Following the practice of [1], [29], 15 document
datasets2 have been adopted. In the last experiment, the

2. Available at http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz

scalability of BKM has been tested on large-scale image
clustering task, for which the number of images we use is
as large as 10 million.

In our study, the performance from traditional k-means
is treated as comparison baseline. In addition, representa-
tive k-means variants, such as Mini-Batch [16], Repeated
Bisecting k-means (RBK) [29], online Learning Vector Quan-
tization (LVQ) [30] and k-means++ [12] are considered in
the comparison. For Mini-Batch, our configuration makes
sure that the iteration covers 10% of the input data. The
configuration is fixed across all the experiments. For RBK,
we select the objective function that maximizes the aver-
age Cosine similarity between samples within one cluster,
which is the special case of ours given the input data is l2-
normalized. LVQ is similar to k-means except that in each
round, a cluster centroid is upated as soon as a sample is
assigned. The updating rate starts from 0.01 and decreases
at a pace of 4× 10−4 in one iteration.

As shown in Table 1, there are variants of k-means
depending on cluster initialization and data partitioning
strategies (e.g., direct k-way or bisecting). This is also true
for the proposed BKM. In the table, ‘initial assignment’
refers to the operation of assigning each sample to its closest
initial centroid. When the initial assignment is based on
random seeding like traditional k-means, it is denoted as
‘rnd’. When it is based on probability distribution seeding
as k-means++, it is denoted as ‘kpp’. Initialization without
initial assignment is denoted as ‘non’. In the experiments, all
the variants out of these different configurations on k-means
as well as BKM are considered. Performance evaluation is
separately conducted for k-way and bisecting clustering
method. Noted that BsBKM(rnd) is the same as RBK if
the input data is l2-normalized. The experiment in this
section is conducted using 1 million SIFT features [31]. The
features are clustered into 10,000 partitions and the average
distortion error is calculated for performance evaluation.

In addition, we also study the performance trend of
BKM when Steps 7-10 in Alg. 1 are modified to moving
the sample as soon as ∆I1(xi) > 0. The variants under
this modification are denoted as BKM(xxx)+Fast. 3 All the
methods considered in the paper are implemented in C++
and the simulations are conducted on a PC with 2.4GHz
Xeon CPU and 32G memory setup.

5.1 Evaluation of Clustering Distortion

Since k-means and most of its variants share the same
objective function (Eqn. 1), it is straightforward to evaluate
the clustering performance by checking to what degree
the objective is reached. The average distortion (given in
Eqn. 17) is adopted for evaluation [2], which takes average
over Eqn. 1,

E =

∑
q(xi)=r ‖ Cr − xi ‖2

n
. (17)

For above equation, the lower the distortion value, the better
quality of the clustering result is.

The first experiment mainly studies the behavior of the
proposed BKM under different initializations. The average
distortion curves produced by variants direct k-way BKM

3. Note that this is not applicable for bisecting BKM.
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TABLE 1
Configurations of k-means and its variants and their corresponding Abbreviations

k-means boost k-means
Initial assigment k-way bisecting k-way bisecting

Random k-means [8] BsKM BKM(rnd) BsBKM(rnd)
Probability based [12] k-means++ [12] BsBKM++ BKM(kpp) BsBKM(kpp)

None - - BKM(non) BsBKM(non)
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Fig. 3. The experiments are conducted on SIFT1M for figures (a)-(c) and
on SIFT100K for figure (d). The results show different performance: (a)
impact of initialization in different ways; (b) fast version of BKM by not
seeking optimal movement in the steps 7-10 of Alg 1; (c) Comparison of
BKM to variants of k-means; (d) significance of improvement over other
k-means variants achieved by BKM by repeating the experiments by 128
runs.

are given in Figure 3(a) as a function of numbers of iteration.
Traditional k-means is treated as baseline for performance
comparison. The result shows that clustering distortion of
BKM drops faster than traditional k-means. The average
distortion from traditional k-means is around 40,450 after
130 iterations. In contrast, BKM without initial assignment
(BKM(non)) is able to reach to the same distortion level after
only 7 iterations. Moreover, we find that initializing BKM
as traditional k-means way (BKM(rnd)) or as k-means++
(BKM(kpp)) allows the iteration to start from a low distor-
tion level. Nevertheless the advantage over BKM(non) fades
away after 15 iterations. In comparison to BKM(non), the
extra cost of adopting initial assignment in BKM is relatively
high.

The second experiment studies the performance trend
of Alg. 1 in case when Steps 7-10 do not seek the best
movement (BKM(xxx)+Fast). As shown in Figure 3(b), the
distortion drops slower than BKM(non) which seeks the
best movement. However, lower distortion is achievable
by BKM(rnd)+Fast when reaching to sufficiently number
of iterations (e.g., 20 iterations). This indicates that when
the optimization scheme is more greedy, it is likely to get
trapped in a worse local optima. This observation applies

to BKM under different kinds of initialization. Noted that
the time cost for BKM(xxx)+Fast is lower than that of BKM
that seeks the best movement in each iteration. Whereas,
BKM(xxx)+Fast usually needs a few more number of iter-
ations to reach to the similar distortion level. Overall, as
investigated in Section 5.4, BKM(xxx)+Fast is %5 faster than
BKM(xxx).

Figure 3(c) studies the trend of average distortion among
the proposed BKM (specifically BKM(non)), traditional k-
means, k-means++, Mini-Batch and LVQ. For all the meth-
ods presented, their distortion decreases steadily as the iter-
ation continues. A big performance gap is observed between
Mini-Batch and other k-means variants. In addition k-means
and k-means++ share similar distortion curve. BKM(non)
outperforms k-means and k-means++ by requiring only 7
iterations. Most of the methods including k-means and k-
means++ take more than 120 iterations to finally converge.
On the other hand, little distortion is observed after 20
iterations, which implies the possibility of terminating the
iteration at 20. Although similiar as BKM, LVQ updates
the intermediate clusters incrementally, updating cluster
centroid directly turns out to be inefficient, which leads to
considerably poor performance.

Since k-means and its variants are all sensitive to initial-
ization, the performance fluctuates from one run to another.
The candelstick chart shown in Figure 3(d) further confirms
the significance of the improvement achieved by BKM. This
chart is plotted with 128 clustering runs (k = 1, 024) on
SIFT100K [5] for each method. As shown in the figure, al-
though the performance flucturates for all the methods, the
variations are minor. Similar as previous observation, there
is no significant difference between traditional k-means and
k-means++. In contrast, the performance gap between BKM
and traditional k-means is much more significant than the
performance variations across different runs.

Table 2 shows the average distortion of different k-
means variants under bisecting strategy. The result from k-
means (after 130 iterations) is presented for the comparison.
As shown from the table, the average distortion from all
bisecting methods are on the level of 4.5×104. Methods built
upon Alg. 1 always perform better. The average distortion
from all bisecting clustering methods are much higher than
that of k-means. They are actually only close to the distor-
tion level of k-means after one iteration. However, the merit
of clustering with bisecting strategy is that it is more than 20
times faster than k-means of a single iteration. The relatively
poor clustering quality produced by bisecting strategy is
mainly due to the issue of underfitting (as discussed in
Section 4.2). The clustering results can be further refined
by Alg. 1 as shown on the 3rd row of Table 2.

As learned from above experiments, on one hand initial
assignment under k-means manner or under k-means++
manner is able to improve the performance of BKM slightly.
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TABLE 2
Average Distortion from K-means Variants under Bisecting Strategy

Method k-means RBK BsKM BsKM++ BsBKM(non) BsBKM(rnd) BsBKM(kpp)
E 40,450.0 45,713.5 45,835.2 45,823.8 45,650.7 45,661.2 45,658.4

E after Rfn. - 43,364.4 4,3323.9 43,366.2 43,293.3 43,285.5 43,285.4

On the other hand, the initial assignment slows down the
method considerably. A trade-off has to be made. In the
following experiments, only the results from two repre-
sentative configurations of BKM, namely BKM(non) and
BKM(rnd)+Fast are presented. We leave the other possible
configurations to the readers.

5.2 Nearest Neighbor Search by Product Quantizer
(PQ)

In this section, BKM is applied for visual vocabulary train-
ing using product quantization [5]. Following the practice
of [5], 100K SIFT features are used for product quantizer
training, while SIFT1M set [5] is encoded with the trained
product quantizers as the reference set for nearest neighbor
search (NNS). The obtained recall@top-k is averaged over
1,000 queries for each method. In the experiment, two
different settings are tested for product quantizer. Namely,
the 128-dimensional SIFT vector is encoded with 8 and 16
product quantizers respectively. For clarity, the evaluations
are separately conducted for direct k-way and bisecting k-
means.

Recall@top-100 for direct k-way are presented in Fig-
ure 4(a)-(d) under two different settings (m = 8 and
m = 16). As seen from the figures, the performances from
k-means, k-means++ and BKM(non) are all very close to
each other under different settings. The product quantizer
trained with bisecting clustering methods shows only 0.1-
1.3% lower performance than that of direct k-way methods.
This basically indicates that product quantizer itself is toler-
ant to clustering quality. The performance of Mini-Batch and
RBK is around 2-6% lower than the other methods. The poor
performance of RBK basically indicates the optimization
objective function under Cosine similarity is not directly
feasible for general l2-space.

5.3 Document Clustering

In this section, the performance of proposed method is eval-
uated under the context of document clustering. Following
in [1], 15 document datasets are used for evaluation. The
documents has been represented with TF/IDF model and
normalized to unit length. Similar to [1], entropy is adopted
for the evaluation as following

Entropy =

k∑
r=1

nr

n

1

log c
∗

c∑
i=1

ni
r

nr
∗ log

ni
r

nr
, (18)

where c is the number of classes. Eqn. 18 evaluates to what
degree that elements from the same class are put in one
cluster. The lower the value, the better the result is. In the
experiment, each method performs clustering for 10 runs,
and the run with the lowest entropy is presented in Table 3.
The presented entropy are averaged over 15 datasets.
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Fig. 4. Performance of Nearest Neighbor Search by PQ on SIFT1M
when adopting different clustering methods for quantizer training. The
size of each product quantizer is fixed to 256 across all the experiments.
The assymetric distance calculation (ADC) [5] is adopted for nearest
neighbor search.

TABLE 3
Clustering performance (average entropy) on 15 datasets

k = 5 k = 10 k = 15 k = 20
k-means 0.539 0.443 0.402 0.387

k-means++ 0.550 0.441 0.403 0.389
Mini-Batch 0.585 0.488 0.469 0.475

LVQ 0.800 0.761 0.681 0.674
BKM(non) 0.552 0.442 0.388 0.368

BKM(rnd)+Fast 0.506 0.419 0.380 0.353
BsKM 0.532 0.438 0.410 0.373

BsKM++ 0.507 0.422 0.400 0.379
BsBKM(non) 0.514 0.388 0.353 0.329

RBK 0.486 0.402 0.366 0.339

In general, methods based on BKM perform consider-
ably better. Furthermore, methods with bisecting strategy
demonstrate slightly better performance than that of direct
k-way in the document clustering task, which shares similar
observation as [29]. Overall, BsBKM(non) shows the best
performance. While the performance of RBK is close to
BsBKM(non). These two methods are quite similar except
that no initial assignment is involved in BsBKM(non). This
indicates the advantage of no initial assignment in this
scenario, which allows clustering to converge to a better
local optima.
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Fig. 5. Scalability test by varying the scale of input data: (a)-(b) and by
varying the number of clusters: (c)-(d).

5.4 Scalability Test on Image Clustering

In this section, the scalability of the proposed k-means is
tested on image clustering. The experiment is conducted on
10 million Flickr images (Flickr10M), which are a subset of
YFCC100M [32]. Hessian-Affine [33] keypoints are extracted
from each image and are described by RootSIFT feature [34].
Finally, the RootSIFT features from each image are pooled
by VLAD [35] with a small visual vocabulary of size 64.
The resulting 8,192-dimensional feature is further mapped
to 512 dimensions by PCA. Following [35], the final VLAD
vector is normalized to unit length. In the direct k-way
clustering case, we set the number of maximum iterations
for all methods to 20. While for the bisecting case, there is no
threshold on the number of iterations. The results reported
in this section have been averaged over 10 runs for each
method.

In the first experiment, clustering methods are tested
in the way that the scale of input images varies from 10K
to 10M. A fixed number of clusters, i.e., 1,024 is used
regardless of the size of dataset. The time costs for direct
k-way and bisecting methods are presented in Figure 5(a)-
(b). Accordingly, the average distortion of all the methods
are presented in Figure 6(a).

As shown in the figures, BKM exhibits slightly faster
speed over k-means and its variants across different scales of
input data under both direct k-way and bisecting cases. The
speed-up becomes more significant as the scale of input data
increases. The higher efficiency of these methods is mainly
attributed to no requirement of initial assignment. Com-
pared with BKM(non), BKM(rnd)+Fast takes extra time.
However, the cost of initial assigment is compensated later
for not seeking the best movement. Compared with direct
k-way clustering, methods with bisecting strategy achieve
much higher scalability. In particular, BsBKM(non) shows
the highest scalability. It only takes less than 94 minutes to
cluster 10 million vectors (in 512 dimensions) into 1,024 clus-
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Fig. 6. Average distortion from all 9 methods under two different scala-
bility testings on Flickr10M (best viewed in color).

ters. The efficiency of Mini-Batch is close to BsBKM(non).
However, as shown in Figure 6(a), the clustering quality is
poor in most of the cases. Overall, BKM(rnd)+Fast achieves
the highest speed efficiency and lowest distortion among all
direct k-way clustering methods. While in the bisecting case,
BsBKM(non) shows the best performance in terms of both
speed efficiency and clustering quality. Similar to the exper-
iments in Section 5.1, the average distortion introduced by
bisecting clustering is much higher than direct k-way due to
the problem of under-fitting.

In addition, the scalability of clustering methods is tested
in the way that the number of clusters by varying from
1,024 to 8,192, while the scale of input data is fixed to 1
million. Figure 5(c)-(d) show the time cost of all 9 methods.
Accordingly, the average distortion from all these 9 methods
are presented in Figure 6(b). As shown in the figures, for
all direct k-way clustering methods, the time cost increases
linearly as the number of clusters increases. Mini-Batch is
no longer efficient as k increases. In contrast, the time cost
of all bisecting methods remains steady across different
cluster numbers. In terms of clustering quality, as seen
from Figure 6(b), in both direct k-way and bisecting cases,
clustering driven by the proposed optimization procedure
(Alg. 1) performs considerably better. A clear trend is ob-
served from Figure 6(b), methods based on Alg. 1 shows
increasingly higher performance than the rest as k grows.
Overall, clustering driven by proposed optimization process
shows higher speed and better quality. The highest speed is
achieved by BsBKM(non), for which only 8 minutes are re-
quired to cluster 1 million high dimensional data into 8,192
clusters. Due to extra cost in initial assignment, bisecting
with traditional k-means and k-means++ still shows around
35% slower speed than BsBKM(non).

As a summary, clustering based on Alg. 1 shows superior
performance in terms of both speed efficiency and quality
under different scenarios. This is mainly due to the nature
of incremental updating scheme, which allows the cluster
structures to be fine-tuned in a more efficient way. When
the proposed Alg. 1 is performed under bisecting manner
(i.e., BsBKM(non)), it shows two orders of magnitude faster
than traditional k-means.

6 CONCLUSION

We have presented a novel k-means variant. Firstly, a clus-
tering objective function that is feasible for the whole l2-
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space is developed. Supported by the objective function,
the traditional k-means clustering has been modified to
simpler form. In this novel k-means variant, we interest-
ingly find that neither the costly initial assignment nor the
seeking of closest centroid for each sample in the iteration
are necessary. This leads to higher speed and considerably
lower clustering distortion. Furthermore when the proposed
clustering method is undertaken in the ways of top-down
bisecting, it achieves the highest scalability and best quality
among all hierarchical k-means variants. Extensive exper-
iments have been conducted in different contexts and on
various datasets. Superior performance over most of the k-
means variants is observed across different scenarios.
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APPENDIX A: OPTIMALITY OF INCREMENTAL K-
MEANS

As shown in Eqn. 13 and Eqn. 9, two optimal objectives are
quite similar. In this section, we show that optimal solution
with respect to objective function (Eqn. 9) can be reached
with incremental updating scheme presented in Alg. 1.

6.0.0.1 Proof: : For contradiction, let Ao =
{S1, S2, · · · , Sk} be an optimal solution and assume that
there exists one element d and clusters Si and Sj such
that d ∈ Si. Now consider the clustering solution A∗ =
{S1, S2, · · · , {Si − d}, · · · , {Sj + d}, · · · , Sk}. Let Di, Ci,
and Dj , Cj be the composite and centroid vectors of cluster
Si − d and Sj , respectively. Let e = I1(Ao)− I1(A∗), then

e =
(Di + d)′(Di + d)

ni + 1
+
D′

jDj

nj

− (
D′

iDi

ni

+
(Dj + d)′(Dj + d)

nj + 1
)

= (
(Di + d)′(Di + d)

ni + 1
−
D′

iDi

ni

)− (
(Dj + d)′(Dj + d)

nj + 1
−
D′

jDj

nj

)

=
2nid

′Di + nid
′d−D′

iDi

ni(ni + 1)
−

2njd
′Dj + njd

′d−D′
jDj

nj(nj + 1)

Let’s define µi =
D′

iDi

ni(ni+1) , µj =
D′

jDj

nj(nj+1) are the average
pairwise inner product in cluster Si and Sj respectively. In
addition, δi and δj are given as the average inner-products
between d and elements in Si and Sj respectively, viz δi =
d′Di

ni
, and δj =

d′Dj

nj
. Above Equation is rewritten as

e = (
2niδi

ni + 1
+

d′d

ni + 1
−

niµi

ni + 1
)− (

2njδj

nj + 1
+

d′d

nj + 1
−

njµj

nj + 1
)

≈ (2δi − 2δj +
d′d

ni + 1
)− (µi − µj +

d′d

nj + 1
)

(19)

Given the fact that (2δi − 2δj + d′d
ni+1 ) < (µi − µj + d′d

nj+1 ),
we have I1(Ao) < I1(A∗), which is contradicting. �

APPENDIX B: CONVERGENCE OF INCREMENTAL K-
MEANS

Si and Sj are two clusters. d is initially part of Si, and Di

is the composite of Si exclude d, Ci is the centroid of Si
exclude d, Dj , Cj is the composite and centroid of cluster
Sj , the move condition of d from Si to Sj should satisfied

(Di + d)′(Di + d)

ni + 1
+
D′

jDj

nj

<
D′

iDi

ni

+
(Dj + d)′(Dj + d)

nj + 1
(20)

This equation can be rewritten as:

(Di + d)′(Di + d)

ni + 1
−
D′

iDi

ni

<
(Dj + d)′(Dj + d)

nj + 1
−
D′

jDj

nj

D′
iDi + 2d′Di + d2

ni + 1
−
D′

iDi

ni

<
D′

jDj + 2d′Dj + d2

nj + 1
−
D′

jDj

nj

2nid
′Di + nid

2 −D′
iDi

ni(ni + 1)
<

2njd
′Dj + njd

2 −D′
jDj

nj(nj + 1)

2
ni

ni + 1

d′Di

ni

−
D′

iDi

ni(ni + 1)
+

d2

ni + 1
< 2

nj

nj + 1

d′Dj

nj

−
D′

jDj

nj(nj + 1)
+

d2

nj + 1

Now if we assume that both ni and nj are sufficiently
large, then ni

ni+1 and nj

nj+1 will be close to 1. Under these
assumptions, we can get

2
d′Di

ni

−
D′

iDi

ni(ni + 1)
+

d2

ni + 1
< 2

d′Dj

nj

−
D′

jDj

nj(nj + 1)
+

d2

nj + 1
.

Now µi =
D′

iDi

ni(ni+1) , µj =
D′

jDj

nj(nj+1) are defined as the aver-
age pairwise inner product in cluster Si and Sj respectively.
δi and δj are given as the average inner-products between d
and elements in Si and Sj respectively, viz δi = d′Di

ni
, and

δj =
d′Dj

nj
, the following inequation holds.

2δi − 2δj +
d′d

ni + 1
< µi − µj +

d′d

nj + 1
. (21)
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